
Indian Health Service
Office of Information Technology
Resource and Patient Management System

Standards and Conventions
Developers’ Handbook

September 2005

Standards and Conventions 	 Developers’ Handbook

TABLE OF CONTENTS
1.0 POLICIES AND PROCEDURES... 3

1.1 General Development Policies... 3

1.1.1	 Policy on SACC Peer Reviews.. 3

1.1.2	 When to use the DBA.. 3

1.1.3	 Policy on using APIs for reads and writes in other applications 3

1.1.4	 Policy on Creating PCC Visits ... 3

1.1.5	 Policy on using parameters for IHS modifications to VA software... 4

1.1.6	 Policy on using event drivers... 4

1.2 Principles of RPMS Data Base Design .. 4

1.2.1	 Objective ... 4

1.2.2	 Integration with VA Data Dictionary... 6

1.2.3	 Use of Standard Tables .. 7

1.2.4	 FileMan Compatible Files.. 9

1.2.5	 Review of Proposed Data Dictionary... 9

1.2.6	 Relationship of RPMS Patient Visit Files to Other RPMS and VA

Files .. 10

1.3 Procedure for Building Application Packages .. 11

1.3.1	 Creating Packages Using KIDS Build ... 11

1.3.2	 Procedure for Building Local M Packages 11

1.4 RPMS Software Certification Policy and Guidelines 11

1.4.1	 Purpose... 11

1.4.2	 Overview ... 11

1.4.3	 RPMS Software Development Process... 12

1.4.4	 Technical Verification Procedure... 15

1.4.5	 Functional Verification Procedure ... 16

1.4.6	 Documentation Verification ... 20

1.4.7	 Design Verification Procedure... 23

1.4.8	 Certification and Release of RPMS Software................................ 24

1.5 Procedure for RPMS Documentation... 24

1.5.1	 Purpose... 24

1.5.2	 Policy .. 25

1.6 Classification of RPMS Software ... 25

1.6.1	 Purpose... 25

1.6.2	 Overview ... 25

1.6.3	 Certified Attributes... 26

1.6.4	 RPMS Data Dictionary Integration .. 26

1.6.5	 Classification ... 26

1.7 Developer’s Checklist .. 27

1.8 Procedure for Submitting Patches to Certified RPMS Software............... 28

1.8.1	 Introduction ... 28

1.8.2	 Patch Process ... 28

1.8.3	 Patch Files .. 29

1.8.4	 Patch Module Manuals.. 29

1.9 Software Maintenance & Support .. 30

Table of Contents
i 	September 2005

Standards and Conventions Developers’ Handbook

1.10 Local Modifications to Data Dictionaries, Data Elements, and Routines in

Class I Packages .. 30

2.0 DEVELOPERS’ TOOLS ... 32

2.1 References to VA System Utilities ... 32

2.1.1 VA Infrastructure Manuals... 32

2.1.2 FileMan Sorting: Crib Sheet .. 32

2.1.3 FileMan Printing: Crib Sheet ... 34

2.1.4 ScreenMan Help: Crib Sheet... 36

2.1.5 Full Screen Editor: Crib Sheet... 37

2.2 IHS System Utilities (XB) ... 38

2.2.1 Summary / Overview... 38

2.2.2 Routine Descriptions ... 39

2.2.3 XBGSAVE - Generic Global Save... 67

2.2.4 XBGSAVE Routine.. 67

2.2.5 ZIBGSV* Routines .. 67

2.2.6 Technical Notes .. 67

2.2.7 Programmer Notes.. 68

2.2.8 XBGSAVE Input Parameters .. 68

2.2.9 Sample Set-up of Routine Call .. 70

2.2.10 Error Codes... 70

2.3 Approved IHS APIs .. 71

2.3.1 Demographic Data .. 71

2.3.2 PCC Data .. 83

2.3.3 Visit Creation API .. 99

2.3.4 Other PCC Data Entry APIs .. 107

2.3.5 Sensitive Patient Tracking APIs .. 126

2.3.6 Inpatient Data.. 128

2.3.7 Appointment Data APIs... 137

2.3.8 Generic VA Scheduling APIs... 143

2.3.9 Adverse Reaction Tracking Package Callable Routines 145

2.4 VA/IHS Convergence: Parameterization Details and Examples 148

2.5 Event Drivers ... 149

2.6 Using the PCC Visit Merge Pointer Update ... 153

2.7 Unix Tools.. 154

2.7.1 VI - UNIX Editor: Crib Sheet... 154

2.7.2 Some Useful Unix Commands or Unix Scripts 156

3.0 CONTACT INFORMATION... 158

Table of Contents
ii September 2005

Standards and Conventions Developers’ Handbook

1.0 Policies and Procedures

1.1 General Development Policies

1.1.1 Policy on SACC Peer Reviews
All RPMS development projects will be coordinated through the SAC Committee
(SACC). Development requests, including enhancements, must be reviewed and
approved by the SACC prior to submission to contracting or to development by
federal staff. This includes all subsequent task orders submitted under a current
contract. Developers will submit preliminary database designs to the DBA for review
by the SACC. Iterations of working software that are sent to users for testing and
feedback, will also be installed in the OIT testing environment for SACC review.

1.1.2 When to use the DBA
• To obtain official name space and number space for your application

• To be assigned a port number for TCP/IP interfaces

• To updates a standard tables, includes creation of new tables

• For final approval of data dictionary structures and any changes

• For final approval of APIs to be used by other RPMS applications

• To submit all integration agreements between your application and others

1.1.3 Policy on using APIs for reads and writes in other applications
To insure the accuracy and integrity of our data, there should be one and only one
way to obtain or update that data and that method must be owned by the application
that owns the data. See standard #2.2.12.3.1.

1.1.4 Policy on Creating PCC Visits
Two APIs have been approved for creating PCC visits. If your application is
involved with patient encounters where the patient may have been checked in or
duplicate visits are a problem, use the new GETVISIT^APCDAPI4 call. Otherwise
continue to use ^APCDALV. The new APCDAPI4 call requires PIMS version 5.3
patch 1002. See section 2.3.3 Visit Creation API for details.

Policies and Procedures
3 September 2005

Standards and Conventions 	 Developers’ Handbook

1.1.5 Policy on using parameters for IHS modifications to VA software
In compliance with the IHS initiative to converge as much as possible with the VA
VistA software, all VA applications modified by IHS will use parameters in making
those modifications. All parameterized modifications will then be submitted to the
VA DBA to see if they can be incorporated into the VA applications. This will
eliminate quite a bit of maintenance on the part of IHS. See the section 2.3.9 VA
Convergence for details and examples.

1.1.6 Policy on using event drivers
In those RPMS applications where certain events may trigger actions in other
applications, we recommend the application publish an “event driver.” In those cases
where event drivers exist, the proper method for triggering actions in other
applications is for those applications to subscribe to the event driver. See section 2.5
Event Drivers for details and examples.

1.2 Principles of RPMS Data Base Design

1.2.1 Objective
The primary objective of data base design for the RPMS is to integrate patient and
cost data into a single ADP system, supporting the various information needs of
specific disciplines and programs, while at the same time collecting and storing a core
set of health and management data that cuts across disciplines and facilities.

This integration of data infers:

•	 That specific information is collected only once, by the program that
generates the data, and made available to all users who need access to it.

•	 That like information is stored in a single, integrated file, rather than being
scattered in a number of discipline-specific files.

An example of the above is the Patient Registration file. Patient data is collected only
once, by Health Records staff, and made available to all users who need some form of
patient data. The Contract Health Services (CHS) program, Third Party Billing
program, Pharmacy system, Laboratory system, Dental system and others do not have
to separately collect and maintain a basic patient file, which would result in redundant
data collection efforts, redundant files, and errors and inconsistencies in patient data
between programs.

Moreover, the data is maintained in a central registration file, not scattered in a
number of dis-similar discipline specific files. If the latter were true, each program
needing patient data would need to be aware of the existence of all such files and

Policies and Procedures
4 	September 2005

Standards and Conventions Developers’ Handbook

access all of the individual files to search for patient data. Furthermore, each time a
new discipline-specific program was added to the system, all of the old programs
needing patient data would need to be rewritten to access the new files.

The same principle applies to diagnoses, operations, laboratory procedures, etc. All
of this data should be stored in a core set of centralized files, and not scattered in a
number of discipline-specific or program-specific files. Cost accounting, third party
billing and patient care programs should be able to obtain all diagnoses, operative
procedures, basic visit data, etc., from the core set of files, and not have to access a
myriad of different disciplinary files for relevant information. This integration
requires each discipline or special program application to make sure that it’s system
stores core data into the appropriate integrated file. Additional, discipline-specific
information, can be stored in discipline-defined files, as needed. The relationship of
these sets of files is illustrated in the attached wheel diagram. (Figure 1). At the core
is a standard set of IHS/VA tables shared by all systems. These include community
tables, facility tables, discipline tables, tribal designations, etc.

Surrounding these tables is a core set of data files, shared by all disciplinary and
programmatic groups as appropriate. Each group will feed information from its
patient encounters into this core set of data.

The outer ring represents the discipline-specific program and management data, that
is not in common with most other disciplines. For Contract Health Services, for
instance, the outer ring would contain files on outstanding and completed CHS
vouchers, commitment register balance, contract appropriation, etc.

Policies and Procedures
5 September 2005

Standards and Conventions Developers’ Handbook

RPMS DICTIONARY RELATIONS

Figure 1-1: RPMS DICTIONARY RELATIONS

1.2.2 Integration with VA Data Dictionary
The IHS is committed to integrating its data dictionary with the Veteran’s
Administration dictionary, to assure that systems obtained from the VA will run in a
compatible mode with RPMS.

In general, where the VA has a dictionary for a specific application, the IHS will
utilize that dictionary. Quite often, however, the IHS needs an additional sub-set of
data not contained in the VA file. If there are only two or three additional fields
needed, the IHS will generally add these fields to the VA file, utilizing a high-order
set of field numbers that will never collide with VA fields.

Policies and Procedures
6 September 2005

Standards and Conventions Developers’ Handbook

If the number of differences between IHS data needs and VA data needs exceeds
three or four fields, the IHS will generally define it’s own file for the data set, which
will point to the VA file for name and other basic information.

An example of this latter structure is shown in the patient file itself. The IHS has its
own patient file (#9000001), which in turn points to the VA Patient file (#2), where
the actual patient name, sex and date of birth are stored. These two files are DINUM
so that the DFN is always the same for each patient.

The relationship of the RPMS patient visit files to other RPMS and VA files is shown
in Figure 1-2.

1.2.3 Use of Standard Tables
Each developer should become familiar with the RPMS standard dictionary before
initiating work on a new system, and should utilize tables and files already defined to
the greatest extent possible.

The following are examples of some of the tables already developed:

File File Name Global
5 STATE ^DIC(5
7 PROVIDER CLASS ^DIC(7
10 RACE ^DIC(10
11 MARITAL STATUS ^DIC(11
12 OCCUPATION ^DIC(12
13 RELIGION ^DIC(13
25 TYPE OF DISCHARGE ^DIC(25
71 RADIOLOGY PROCEDURES ^RAMIS(71
80 ICD DIAGNOSIS ^ICD9(
80.1 ICD OPERATION/PROCEDURE ^ICD0(
80.2 DRG ^ICD(
80.3 MAJOR DIAGNOSTIC CATEGORY ^ICM(
9999999.01 USER CONVERSION ^AUTTUCV(
9999999.02 PATIENT RECORD DISPOSITION ^AUTTDIS(
9999999.03 TRIBE ^AUTTTRI(
9999999.04 IMM MANUFACTURER ^AUTTIMAN(
9999999.05 COMMUNITY ^AUTTCOM(
9999999.06 LOCATION ^AUTTLOC(
9999999.07 MEASUREMENT TYPE ^AUTTMSR(
9999999.08 RECODE ICD/APC ^AUTTRCD(
9999999.081 APC RECODE CATEGORY ^AUTTRCDC(
9999999.09 EDUCATION TOPICS ^AUTTEDT(
9999999.11 VENDOR ^AUTTVNDR(
9999999.12 RECODE INJURY ^AUTTRIJ(

Policies and Procedures
7 September 2005

Standards and Conventions Developers’ Handbook

File File Name Global
9999999.13 LAB TEST ^AUTTLAB(
9999999.14 IMMUNIZATION ^AUTTIMM(
999999.15 EXAM ^AUTTEXAM(
9999999.16 MEDICATION ^AUTTMED(
9999999.17 TREATMENT ^AUTTTRT(
9999999.18 INSURER ^AUTNINS(
9999999.19 SURVEILLANCE CODE ^AUTTSURC(
9999999.21 AREA ^AUTTAREA(
9999999.22 SERVICE UNIT ^AUTTSU(
9999999.23 COUNTY ^AUTTCTY(
9999999.24 CLINICAL REMINDER CODE ^AUTTCRC(
9999999.25 BENEFICIARY ^AUTTBEN(
9999999.26 SERVICE CATEGORY ^AUTTSC(
9999999.27 PROVIDER NARRATIVE ^AUTNPOV(
9999999.28 SKIN TEST ^AUTTSK(
9999999.29 DISTRICT ^AUTTDST(
9999999.31 ADA CODE ^AUTTADA(
9999999.32 MEDICARE SUFFIX ^AUTTMCS(
9999999.33 RAILROAD PREFIX ^AUTTRRP(
9999999.34 VENDOR TYPE ^AUTTVTYP(
9999999.35 QUANTUM CODE ^AUTTQUAN(
9999999.36 RELATIONSHIP ^AUTTRLSH(
9999999.37 U/R DENIAL REASONS ^AUTTREAS(
9999999.38 ERROR MESSAGES ^AUTTEMSG(
9999999.39 RPMS SITE ^AUTTSITE(
9999999.41 IMMUNIZATION LOT ^AUTTIML(
9999999.42 HOUSEHOLD STATUS ^AUTTHHS(
9999999.43 EMPLOYMENT STATUS ^AUTTEMP(
9999999.44 INCOME SOURCE ^AUTTINC(
9999999.45 RPMS APPLICATION PARAMETERS ^AUTNSYS(
9999999.46 PHYSICAL THERAPY ^AUTTPHTH(
9999999.47 RPMS RESERVATION ^AUTTRES(
9999999.48 BIC ELIGIBILITY ^AUTTBICE(
9999999.49 IHS TASK REPRINT ^AUTTZTSK(
9999999.51 APPROPRIATION NO. ^AUTTPRO(
9999999.52 ALLOWANCE NO. ^AUTTALLW(
9999999.53 NO LONGER USED
9999999.54 BUDGET ACTIVITY ^AUTTBA(
9999999.55 SUB-ACTIVITY ^AUTTSA(
9999999.56 SUB-SUB-ACTIVITY ^AUTTSSA(
9999999.57 COMMON ACCOUNTING NUMBER ^AUTTCAN(
9999999.58 COST CENTER ^AUTTCCT(
9999999.59 OBJECT/SUB-OBJECT ^AUTTOBJC(

Policies and Procedures
8 September 2005

Standards and Conventions Developers’ Handbook

File File Name Global
9999999.591 OBJECT CLASS GROUP ^AUTTOCG(
9999999.61 OBJECT CLASS CATEGORY ^AUTTOBCC(
9999999.62 FMS DEPARTMENT/PROGRAM ^AUTTPRG(
9999999.63 REFERENCE CODE ^AUTTDOCR(
9999999.64 HEALTH FACTORS ^AUTTHF(
9999999.65 COVERAGE TYPE ^AUTTPIC(
9999999.66 LOCATION CODE ^AUTTLCOD(
9999999.67 OBJECT CLASS REPORT GRP ^AUTTOCRG(
9999999.68 DIAGNOSTIC PROCEDURE RESULT ^AUTTDXPR(
9999999.69 ACCOUNTING POINT ^AUTTACPT(
9999999.71 IHS COMMUNICATIONS PARAMETERS ^AUTTTEL(
9999999.72 REVENUE CODES ^AUTTREVN(
9999999.73 NO LONGER USED
9999999.74 CHA ICD RECODE TABLE ^AUTTCHA(
9999999.75 EMPLOYER ^AUTNEMPL(
9999999.76 TYPE OF BUSINESS ^AUTTTOB(
9999999.77 EMPLOYER GROUP INSURANCE ^AUTNEGRP(
9999999.78 SSN STATUS ^AUTTSSN(
9999999.79 GEOGRAPHICAL LOCATION ^AUTTGL(
9999999.81 SIZE OF SMALL BUSINESS ^AUTTSOB(
9999999.82 PERCENTILES ^AUTTPCT(

1.2.4 FileMan Compatible Files
All files utilized in RPMS applications will be FileMan compatible files, and FileMan
protocols, (e.g., DIE or IX1^DIK), plus edits will be honored.

One of the main goals of the RPMS is to provide the tools to local facility staff to
generate reports and make retrievals to satisfy their unique and constantly changing
information needs. Historically, it was necessary to write a new program everytime
new information needs arose. Under RPMS, the VA FileMan offers a flexible,
sophisticated but easy-to-use capability for local report generation.

Using DIE to update the files ensures that all necessary housekeeping and cross-
references updates are accomplished. This also allows users to add additional cross-
indices to files to speed up retrieval time for specific applications in local use,
without having to modify the update logic.

1.2.5 Review of Proposed Data Dictionary
Each developer will define data requirements early in the design layout.

Policies and Procedures
9 September 2005

-

-

Standards and Conventions Developers’ Handbook

For RPMS applications, it is recommended that this file description be submitted to
the DBA early in the system design phase for review and possible suggestions on
integration with other RPMS applications.

1.2.6 Relationship of RPMS Patient Visit Files to Other RPMS and VA Files

| 2 | | 9000001 |

| VA PATIENT | | IHS PATIENT |

| FILE | | FILE |

| - - - - - - - - - - - | | - - - - - - - - - - - -|

| PATIENT #1 | < - -| PATIENT #2 |

| | | |

| PATIENT #2 | < - -| PATIENT #2 | < - - - -

| | | | |

|

|

|

| - - - - - - - - - - - - - - -

| | 9000010 |

| | AUPNVSIT |

| | (VISIT) |

| | |

| | - - - - - - - - - - |

| | VISIT #1 | < -

| | DATE | ^ ^ ^

< - - | PATIENT | | | |

| | LOCATION | | | |

| | - - - | | | |

| | | |

| | | | |

| | | - - - - - - - - - - | - - - - - - - - - - - | - - - - - - - - - -

| | | | 9000010.07 | | | 9000010.06 | | | 9000010.xx |

| | | | AUPNVPOV | | | AUPNVPRV | | | AUPNV. . . |

| | | | (POV) | | | (PROVIDER) | | | (OTHER) |

| | | | - - - - - - | | | - - - - - - - | | | - - - - - - - - |

| | | | POV #1 | | | PROV #1 | | | RECORD #1 |

| | <-| VISIT | <- | VISIT | <-| VISIT |

<- | PATIENT |<- | PATIENT | <-| PATIENT |

	POV		PROVIDER		XXXXXX
	- - - - - -		- - - - - - -		

- -
4		9999999.06		80		200
V A		IHS LOCATION		VA ICD9		New Person
INSTITUTION		TABLE		TABLE		FILE
- - - - - -		- - - - - - - - -		- - - - - - -		- - - - - - - -
LOC #1	< - - - -	LOC #1		DX #1		PROV #1
LOC #2		LOC #2		DX #2		PROV #2

Figure 1-2

Policies and Procedures
10 September 2005

Standards and Conventions Developers’ Handbook

1.3 Procedure for Building Application Packages

1.3.1 Creating Packages Using KIDS Build
All RPMS packages will be distributed using the VA Kernel Installation and
Distribution System (KIDS) builds. These builds will contain all M components
necessary to run an application, including data dictionaries, routines, options,
protocols, keys and parameters. Full documentation on how to build and use KIDS is
found in the VA Systems Manual.

1.3.2 Procedure for Building Local M Packages
A designer of an RPMS application eventually will need to create an application
package of all of the routines and globals to be sent to other computer sites. Package
systems to be used by other members of the IHS must be completed in a standard
way. The following rules must be followed, and if followed, will allow the recipients
of the system to install the package without interfering with other applications
running on their computer.

The Area ISC should assign a name and numberspace to any user that will be creating
systems of any kind. Each Area has been assigned a range of numbers that will
assure uniqueness and compatibility with other users of RPMS-developed software.
This is done to protect systems within the Area even if there is no intent to send the
system to other Areas.

1.4 RPMS Software Certification Policy and Guidelines

1.4.1 Purpose
The purpose of this document is to provide policy and guidelines to be followed in
the certification of RPMS Software. The purpose of certification is to ensure the
functional soundness and technical correctness of RPMS software and
documentation.

1.4.2 Overview

1.4.2.1 Requirement for Certification
All IHS RPMS programs and packages which are to be distributed nationally
throughout the IHS must first be certified by SQA section of OIT after a final SAC
committee review.

Policies and Procedures
11 September 2005

Standards and Conventions 	 Developers’ Handbook

1.4.2.2 Certification Process Components
The certification process consists of four components:

1.	 Technical Verification: This will be performed by a member of the SQA to
ensure that the system conforms to RPMS Programming Standards and
Conventions.

2.	 Functional Verification: This will be accomplished by the appropriate
Professional Specialty Group (PSG), or designated project leader, in
conjunction with the alpha/beta test facilities to verify that the application
conforms to system requirements, operates correctly and, in general, does
what the PSG has specified. Limited functional verification will be done in
SQA.

3.	 Design Verification: This will be performed by the DBA and will assure that
the packages are integrated with other RPMS dictionaries in accordance with
the Principles of Data Base Design as outlined elsewhere in this handbook.

4.	 Documentation Verification: This will be accomplished by SQA in
conjunction with the alpha/beta test phase to ensure conformance to the
RPMS Documentation Standards as outlined in Appendix F.

1.4.2.3 Non-RPMS Packages
If an RPMS package conforms with the first two requirements but not the third, it will
be certified for IHS distribution as a Class II package as defined in Appendix J.

1.4.2.4 Certified RPMS Packages
If a package satisfies all four components, the system will be certified as a Class I
system as defined in Appendix J.

1.4.3 RPMS Software Development Process
This section defines the procedures for RPMS software development and
certification. The first three phases may be sequential, or concurrent if using a rapid
development methodology. The steps involved in producing RPMS software are:

1.4.3.1 Functional Requirements/Design Phase
A defined customer group (may be a PSG or national program office) conceptualizes
new functionality and determines high-level conceptual design. The customer group
and assigned developer then specify detailed requirements, starting with the highest
value features first. Particular attention is focused on building in flexibility for future

Policies and Procedures
12 	September 2005

Standards and Conventions Developers’ Handbook

enhancements. Statements of Work are drafted and reviewed by the SAC Committee
(SACC).

1.4.3.2 Prototype/Development Phase
The developers begin creating those features with the highest value to the customer.
By the time, development starts on any feature, both the developers and customers
have defined enough detail using language both can understand. Design and
development of the software will be in compliance with the defined IHS Standards
and Conventions and policies defined in this document. The developer will begin
preparing technical documentation.

1.4.3.3 Alpha Testing
The first step in testing is performed on the developer’s system to test both the
functionality and the installation procedure. The developer will then send the
software and installation instructions to the selected alpha test site or sites. The test
site will install the software verifying the accuracy of the installation instructions.
Then the test site’s users will test the functionality of the new features. This is an
important time for feedback to the developer to refine the software in compliance
with the users’ needs. Additional iterations of the software will continue to be
distributed to the alpha test sites until the all defined requirements are met.

1.4.3.4 Preliminary Technical Verification
Software Quality Assurance (SQA) will assign a verifier to the package to complete
the Preliminary Technical Verification (PTV). Preliminary verification can be in
parallel with the final stages of the alpha test or at the initiation of the beta test phase.
The developer is responsible for checking compliance with the SAC by running
^XINDEX and SAC Checker (^AZHLSC) and will correct all items noted by these
utilities. The developer will forward the application using a KIDS build and all
accompanying documentation to the appropriate SQA directory. Requests for
Exemption to the SAC must accompany the files being submitted to SQA for
preliminary review. Use only the approved form in Appendix B of the SAC. Review
by the DBA and SACC are performed at this time. The PTV should be completed
within 30 days from receipt of the system. The reviewer will provide written findings
(electronic or letter format) to the developer for action. Upon completion of the PTV,
SQA will coordinate any changes required with the developer prior to or during the
initiation of the beta test.

1.4.3.5 Beta Testing
The customer group, with the assistance of the developer and OIT, will select at least
two, but no more than five beta test sites. Test sites are selected based on adequate

Policies and Procedures
13 September 2005

Standards and Conventions Developers’ Handbook

hardware, IT support and users able and willing to test all functionality, balancing
size and type of facility. The developer will provide SQA with test site information
including site names and points of contact. SQA staff will coordinate the beta testing
phase, prepare beta test agreements, supply test sites with a beta test checklist and
begin a beta test log on the approved electronic mail system. Signed copies of the
test agreement will be maintained in the SQA Verification files for each package.
Beta testing will not commence until all signed agreements are received by SQA.

The purpose of the beta test is to confirm the functionality on diverse systems. The
developer, with oversight by the customer group and SQA, will make modifications
as needed to insure the specified level of service. As adjustments are made, the
developer will send updated package files to SQA for distribution to test sites. New
functionality will not be added during beta testing. At this time the customer group
works with a technical writer to create a user manual while the developer finalizes the
technical documentation.

When the package has remained stable for a minimum of 30 days and meets the
requirements of the customer group, it is ready for final certification. The customer
group will notify SQA using the formal endorsement form that the system has met
functional requirements and is ready for release. In addition, all beta test sites will
complete the beta test checklist and return it to SQA.

1.4.3.6 Final Verification & Release
Once SQA receives formal endorsement from the customer group, a final technical
verification is performed. This is to insure that modifications made during beta
testing did not affect SAC compliance. Final verification of technical and user
manuals is also performed. Once the application has passed final verification, a
release letter is written, signed and released. The software is placed in the
appropriate distribution directory and released to the field via Area Offices.

1.4.3.7 Software Maintenance & Future Modifications
Software errors reported by sites will be addressed by the developer and incorporated
into future patches. The customer group periodically will define enhancements
desired in the certified system. These will be made by the developer and
incorporated into either a future patch or a new version of the system. The decision
whether to include enhancements into a patch or a new version rests with the
customer group and OIT via a SACC review.

1.4.3.8 New Version Certification
The new release will be sent to the SQA for re-certification, where it will follow the
same procedures as a system in Beta testing.

Policies and Procedures
14 September 2005

Standards and Conventions 	 Developers’ Handbook

1.4.3.9 Patch Certification
Patches follow the same defined development steps as new applications and new
versions except for preliminary technical verification and beta testing. The patch
testing phase is complete after 2 weeks with no changes or as defined in the
Statement of Work. Once an adequate number of test sites have certified that the
patch works, the developer adds the patch to the Patch Module in IHS MailMan and
submits the software to SQA. Another developer will complete the patch and SQA
will verify it upon review with no problems identified.

1.4.4 Technical Verification Procedure

1.4.4.1 Objectives of Technical Verification
It is not the purpose of this verification to ensure that the program accomplishes its
design objectives, since this will be done by the functional verification of the system.
The objectives of technical verification are basically to ensure the RPMS programs
distributed throughout IHS meet the following requirements:

1.	 Correctness: That there are no obvious errors in functionality, system design,
or programming methodology.

2.	 Standards and Conventions: That appropriate SAC are followed to facilitate
maintenance and program readability, and to provide consistency across
RPMS programs.

3.	 Documentation: That adequate user and technical documentation has been
developed for the system.

1.4.4.2 When Verification is Required
1.	 National Distribution: Verification is required for any RPMS program

developed by the IHS that is to be distributed nationally from the SQA, or
which is defined as a part of the RPMS "family" of systems.

2.	 Local Use: Verification is not required for programs intended for local use
only. However, it would be prudent to follow the RPMS SAC even for local
development, since these standards are designed primarily to protect systems
that run in the same environment, and to facilitate program maintenance.

•	 Local systems may be distributed informally to other Areas without
verification, but the receiver of the system should be forewarned that
the unverified application may interfere with other approved
application systems running on their computer(s) either now or at some
time in the future.

Policies and Procedures
15 	September 2005

Standards and Conventions 	 Developers’ Handbook

•	 A locally developed system may be submitted for verification at any
time by following the guidelines described in this manual.

3.	 VA Software: VA programs will not be verified by the SQA since they have
already undergone a certification by the VA. However, any modules or
changes added by the IHS will be verified.

1.4.5 Functional Verification Procedure

1.4.5.1 Objectives of Functional Verification

The objectives of the functional verification of a system are to:
1. Ensure that the system performs according to the design criteria,

2. Ensure that the system is easy to understand and use by an end user,

3. Ensure that the system is documented, and has a readable user manual

1.4.5.2 When Verification is Required
A functional verification of a system is performed by the system designer and
designated test sites during an alpha test of the system and again during the beta test
of the system.

1.4.5.3 Definition of Alpha/Beta Test

Alpha Test
An alpha test of a system is the first comprehensive check-out of the system by
someone other than the development staff. It is usually performed by end users in
an operational setting in the developer’s Area, but could be a non-operational
"laboratory" test by PSG members at the development site. In either case, the test
should be coordinated and monitored by the PSG.

Beta Test
A beta test is the second formal review of a system, after all of the problems
identified in the alpha test have been corrected. A beta test is definitely in an
operational setting, and involves day-to-day use by end users. Preferably, it will
be accomplished in an Area outside of the development Area, but this is not
mandatory. The PSG is responsible for overseeing the pilot operation, and
verifying that the system accomplishes all design objectives in an acceptable
fashion.

Policies and Procedures
16 	September 2005

Standards and Conventions 	 Developers’ Handbook

1.4.5.4 Functional Verification of Program
Every option of the program must be thoroughly and accurately tested using a logical
testing sequence to ensure completeness. The PSG will prepare a written test plan
before alpha and/or beta test, to follow during the system check-out. Upon
completion of the beta test phase, the PSG/test site will complete the formal
endorsement form and beta checklist certifying that the package has been fully tested
and is ready for release.

Beta testing involves not only a formal check-out as described in this document, but
also routine day-to-day operation of the system by end users for some period of time,
usually 30 days at a minimum.

Formal Functional Verification Plan
The formal functional verification plan should ensure the following.

1.	 Each option should function according to PSG design criteria, and must
receive PSG endorsement.

2.	 The software must do what the documentation says it does. There should
be no inconsistencies between performance and documentation.

3.	 If there are nuances in the way the software works, they should be
documented, either in the software itself or in the User Manual.

4.	 If there are assumptions made that are not readily apparent, they should be
documented.

5.	 The style of the package, in screen formats, data input, and option
selection, should be consistent and unambiguous.

6.	 No unwarranted errors should be generated while using any of the options
in any possible way.

7.	 The system should never "hang up" in an error condition, but should
display the error message and return the user to an option selection.

8.	 Response times must be acceptable from the end-user standpoint.

9.	 "Help" prompts should be meaningful and provide examples when
appropriate.

1.4.5.5 Sample Beta Checklist

RPMS BETA TEST CHECKLIST

Policies and Procedures
17 	September 2005

Standards and Conventions Developers’ Handbook

Please fill in the blanks or circle appropriate response as necessary.

DATE: ____________________

BETA SITE NAME: _______________________________

COMPUTER: ________________________ OPERATING SYSTEM: UNIX DOS

PACKAGE NAME & VERSION: __________________________

SIZE OF DATABASE WHERE INSTALLED: ______________ INSTALL TIME: _____________

===

Check ONLY the items that were FUNCTIONALLY reviewed during the beta test.

PROBLEMS OR ERRORS ENCOUNTERED DURING THE BETA TESTING OF ANY PACKAGE MUST BE
REPORTED IMMEDIATELY USING THE BETA TEST LOG E-MAIL OR VIA TELEPHONE CONTACT
THROUGH THE RESPONSIBLE AREA PERSONNEL TO THE DEVELOPER OF THE PACKAGE.

Review installation notes file before installation

Ascertain that REQUIREMENTS in Notes file is met on target system

Review all accompanying manuals

Execute all menu options

Review all help prompts for clarity and usefulness

Execute all field prompts

Test escapes at all prompts ("^")

Test jumping capabilities at all menu options, prompts ("^Mnemonic")

Manipulate all site parameters in various combinations

Test various access levels of users (use the various security keys)

Perform all available data entry functions

Check that all fields are storing the appropriate data

Test all reporting functionality of the package for accuracy of results and presentation

Review data extractions for integrity of data

Ascertain functionality of all bulletins in package, if applicable

If an audit is included, test if functioning as intended

Schedule all background tasks and determine if appropriately functioning and correct results

Check performance of batch transmissions, if applicable

Review hooks and integration of data with other packages, if applicable

Policies and Procedures
18 September 2005

Standards and Conventions Developers’ Handbook

Test printer functionality where indicated, i.e., slave, queuing, direct printing, screen printing

Report all problems encountered through proper channels to the developer

Other items not listed, specify

CHECKLIST COMPLETED BY:________________________________DATE:_____________________

Please provide any comments you may have on any area of testing the noted package.

Thanks for participating in the BETA testing process. Your assistance helps assure quality software for all of IHS.

At the end of the BETA testing phase, please return this form and your BETA test endorsement form to SQA,
Headquarters West, 5300 Homestead NE, Albuquerque, NM 87110. A FAX copy is acceptable

GUIDELINES FOR BETA TEST SITES

The following are items that the test site should evaluate while performing the BETA Testing.
All concerns should be reported via proper channels to the responsible developer as noted.

Application package validation is complete when the PSG/Program Manager has determined
and certifies that the system is correct based on the criteria contained in its requirements
document.

¾ Installation steps - clear and concise, accurate. Pre- and post-init requirements are clear.
Can they be simplified for the installer?

¾ All package requirements are noted.
¾ Resource requirements are noted, if applicable.
¾ User Manuals are clear, accurately present the screen displays, are useful and provide

clear presentation.
¾ Technical Manuals are useful to the installer/support personnel.
¾ Screen displays are logical and well presented.
¾ Help frames, prompts or on-line documentation are accurate and useful.
¾ Menu options/prompts perform appropriately.
¾ Background tasks perform accurately.
¾ Data integrity is maintained.
¾ Data transmission performs as required.
¾ Security is sufficient.
¾ Devices function appropriately.
¾ All reports produce the desired results.
¾ Any system configuration/management concerns are appropriately addressed.
¾ Global management is clearly defined.

Policies and Procedures
19 September 2005

Standards and Conventions 	 Developers’ Handbook

¾ Unnecessary routines or components are noted for deletion to assist with system
management.

¾ Additional functionality to an existing package is clearly stated.
¾ Site configurable items are clearly defined.
¾ All information necessary to install and support the package was provided with package.

1.4.6 Documentation Verification
This process will involve reviewing all documentation for:

•	 thoroughness,
•	 accuracy,
•	 readability,
•	 functionality of option descriptions and examples, and
•	 adherence to RPMS Documentation Standards for RPMS Software.

1.4.6.1 Minimum Documentation Required
•	 User Manual
•	 Technical Manual
•	 Release Notes (Required for major revisions of existing systems) identifying

all enhancements and changes made to the system since the last verified
version

•	 Installation Manual (or Notes file for patches)

1.4.6.2 Preparation of Documentation
All documentation that is to accompany a RPMS package must be prepared in
electronic form as outlined in the RPMS Documentation Standards.

1.4.6.3 Review of User Manual
The User Manual will be evaluated for the following:

•	 all options are fully described;
•	 all options should have appropriate examples;
•	 the format should be readable, complete and easily understood and can be

followed by a novice user;
•	 the manual should be organized in a logical manner;
•	 all prompts described in the manual should match what is actually on the

screen; and
•	 rules of grammar and correct spelling should be followed.

Policies and Procedures
20 	September 2005

Standards and Conventions 	 Developers’ Handbook

1.4.6.4 Review of Technical Manual
The Technical Manual will be evaluated for the following:
•	 that content meets minimum requirements as set forth in the RPMS

Documentation Standards
•	 and that items required to be noted by a RPMS SAC are accurately

documented.

1.4.6.5 Review of Documentation
The SQA will complete the documentation review and provide a report of their
findings in writing by electronic mail, or by letter to the responsible developer/
preparer of the manual. Unresolved issues will be handled as outlined in the RPMS
Documentation Standards.

1.4.6.6 Procedure for Package Installation Guide and Patch Notes

1.4.6.6.1 RPMS Application Installation Guide
All RPMS software must have an Installation Guide prepared as outlined in
Appendix F of the 2005 RPMS SAC. This Guide is to be prepared using PDF
format. In general, developers are encourage to try NOT to instruct the user to
"see the manual" for information, as the manual is generally not available during
installations.

1.4.6.6.2 Patch Notes
All patches will have a notes file. When writing the notes file, developers should
use the sample template noted in section 1.4.6.6.3. This sample represents the
minimum items required in all notes files. In general, developers are encouraged
to NOT instruct the user to "see the manual" for information, as the manual is
generally not available during installation.

1.4.6.6.3 Sample Patch Notes

)
===
PREFIX: {Prefix as found in the PACKAGE file}
CURRENT VERSION: {Version}
===

*****NOTE*****NOTE*****NOTE*****NOTE*****NOTE*****NOTE*****NOTE*
**
* *

INSTALLATION NOTES FOR (Application Package Name

{Patch number if a patch}

Read the Entire Notes File Prior to Attempting Any Installation !!!

Policies and Procedures
21 	September 2005

Standards and Conventions Developers’ Handbook

**
*****NOTE*****NOTE*****NOTE*****NOTE*****NOTE*****NOTE*****NOTE*

b)

2. CONTENTS OF DISTRIBUTION

a)

3. REQUIREMENTS

a) Kernel V 8.0 or later

b) FileMan V 22 or later

noted with new install)

The

f)
Transport global.

1. GENERAL INFORMATION

a) Print all notes/readme files.

It is recommended that the terminal output during the installation be captured using an
auxport printer attached to the terminal at which you are performing the software installation.
This will assure a printed audit trail if any problems should arise.

<KIDS_file> - Routines
b) <notes_file> - This file

c) <List any other files>

c) {List any packages, including version, required to install and/or run this package}

4. INSTALLATION INSTRUCTIONS

In all UCI’s running {application name}:

a) Disable logins or ensure all users are off, or disable [prefix]MENU.

b) Do routine save and global save of <old routines/globals>.
(Note: Remove these saves from your system 7-10 days after this installation if no problems

c) {Delete the routines [prefix]*.}

d) Load the Distribution into KIDS using option 1 on the KIDS Installation menu.
distribution was released in a file named <KIDS file name>.

e) Verify the load using option 2 on the KIDS Installation menu.

Consider using options 3 and 4 on the KIDS Installation menu to print and compare the

Policies and Procedures
22 September 2005

Standards and Conventions 	 Developers’ Handbook

g) {Include any special
instructions on answering KIDS questions.}

i)

i) Enable logins and/or [prefix]MENU.

5. POINT OF CONTACT

OIT CUSTOMER SUPPORT CENTER
PHONE: (505) 248-4371

(888) 830-7280
FAX: (505) 248-4199

EMAIL: ITSCHelp@ihs.hhs.gov

Install the distribution using option 6 on the Installation menu.

h) Assign option [prefix]MENU and security key [prefix]ZMENU.

{Assign other menus and keys to designated users }

Web: http://www.rpms.ihs.gov/TechSupp.asp

1.4.7 Design Verification Procedure

1.4.7.1 Responsibility
The DBA will review the design of the system concurrently with Technical
Verification to determine whether it is fully integrated with other RPMS data
dictionaries. The section on Data Base Design in this handbook discusses data base
design criteria for RPMS applications. These requirements are:

•	 If the application generates patient-specific health data, this data will be
integrated into the core set of patient care dictionaries;

•	 Whether dealing with patient health data or not, the application should
integrate with other pre-existing RPMS dictionaries as appropriate;

•	 The application should use standard IHS tables where appropriate, rather than
create new tables.

1.4.7.2 Results of Review
Depending on the results of the design verification, the system will either be certified
or returned to the developer for conformance to the RPMS design principles.

Policies and Procedures
23 	September 2005

Standards and Conventions 	 Developers’ Handbook

1.4.8 Certification and Release of RPMS Software

1.4.8.1 Items Required for Certification
1.	 Receipt of signed PSG Endorsement Form and Beta Test Checklist
2.	 Successful completion of final verification
3.	 Successful completion of beta test phase
4.	 Relevant data base design criteria are satisfied
5.	 Final versions of software and documentation

1.4.8.2 National Release
If the software satisfies all outlined requirements, it will be submitted for final
certification and national release. If the software does not meet all the outlined
requirements it will be returned to the developer for rewrite or redesign. Any
software released to users that is not classified as certified will not be supported by or
maintained by OIT.

1.	 Responsibility: The SQA is responsible for the coordination and release of
RPMS packages and will maintain a central file of all systems that have been
certified.

2.	 Release Letter: A release letter signed by appropriate officials will be
prepared and distributed through appropriate channels announcing the
availability of the newly certified and released software. A copy of the PSG
endorsement(s) will be attached to the release letter.

3.	 Certified Software: When all concurrences are in place, the SQA will make
the newly certified software available for Area ISC personnel. A national
release e-mail message will be generated in addition to the written Release
Letter announcing the package release.

1.5 Procedure for RPMS Documentation

1.5.1 Purpose
To establish policy for all IHS RPMS software package documentation. It may also
apply to package documentation for non-RPMS automated information systems. This
section defines package documentation and management of documentation. RPMS
documentation standards (Appendix F) have been established to:

•	 Provide a basic documentation structure that can be applied to every RPMS
national package. For non-RPMS automated information systems software
packages, documentation must be available to support the product.

Policies and Procedures
24 	September 2005

Standards and Conventions 	 Developers’ Handbook

•	 Provide consistency in all RPMS documentation.

•	 Provide criteria by which documentation of an RPMS package can be verified.

•	 Ensure the highest standard of documentation in order to achieve the goal of
providing optimal information to the targeted audiences.

1.5.2 Policy

1.5.2.1 RPMS Packages
1.	 Electronic copy documentation shall be provided for all RPMS national

packages.

2.	 Package documentation shall be provided in sufficient detail for users and
local site manager to install, operate, and manage the package.
Documentation must provide clear, understandable materials that serve the
software package users.

3.	 Package documentation shall comply with the RPMS documentation
standards.

4.	 Documentation shall reference the availability of on-line tools (e.g., help
frames).

5.	 The SQA, OIT shall review all nationally-developed RPMS software
packages for compliance with the documentation standards.

1.6 Classification of RPMS Software

1.6.1 Purpose
The purpose of this appendix is to provide policy and guidelines to be followed in the
classification of RPMS software. The purpose of classification is to distinguish, for
users, the different levels of software and the level of support they can expect from
the OIT.

1.6.2 Overview
Classes: Within the RPMS, there are two classes of software based on whether the
application has been certified by the RPMS/CMB, and whether the data base has been
integrated into the RPMS Data Dictionary.

Software Classes

Policies and Procedures
25 	September 2005

Standards and Conventions Developers’ Handbook

 Class I Class II
Certified by RPMS/CMB Yes Yes
Integrated with RPMS Data Yes No
Dictionary

1.6.3 Certified Attributes
A system certified by the SQA (Class I and Class II) has the following attributes.

Technical Verification: The system has received technical verification. This
verification ensures that the system has been written in accordance with RPMS
Programming SAC.

Functional Verification: The system has received functional verification by the
appropriate PSG, or in the absence of a PSG, by a user group outside of the
developer’s Area.

Support: The system will be supported by OIT.

Distribution: The system is available for IHS national distribution as part of the
RPMS.

1.6.4 RPMS Data Dictionary Integration
A system which has been integrated with the RPMS Data Dictionary is one which
meets the following criteria.

Certification: The system is certified by the SQA both functionally and technically.

Standard RPMS Tables: The system uses standard RPMS tables where appropriate,
as opposed to local tables. Examples of non-complying applications might be those
that use a local provider discipline table, rather than the RPMS Provider Class
Table/File; or a local Tribe table rather than the RPMS Tribe Table/File.

Core Data: The system stores RPMS core data in the appropriate RPMS file (i.e.,
visits are generated in the RPMS Visit File, diagnoses in the RPMS Purpose of Visit
File, immunizations in the RPMS Immunization File, etc...)

1.6.5 Classification
Based upon the classification criteria, the two RPMS Classifications for software are
further defined as follows.

Policies and Procedures
26 September 2005

Standards and Conventions Developers’ Handbook

1.6.5.1 Class I Software
• Verified technically by the SQA

• Verified functionally by a PSG or user group outside of the developer’s Area

• Integrated into the RPMS Data Dictionary

• Supported by a national development center

• Available for IHS-wide distribution through

• SQA

• May or may not be mandated for implementation IHS wide

1.6.5.2 Class II Software
• Verified technically by the SQA

• Verified functionally by a PSG or user group

• Not integrated into the RPMS Data Dictionary

• May or may not be supported by a national development center

• Available for distribution through the SQA

1.6.5.3 Designation Documentation
The class designation of all distributed packages will be identified in the package
documentation and will be recorded in the Package File which is distributed with the
Kernel.

1.6.5.4 Additional Information
For additional information on certification procedures, programming standards, and
RPMS data base design criteria, refer to the appropriate appendices of this document.

1.7 Developer’s Checklist
Developer’s should go over this checklist prior to submitting their packages for
verification.

errors found?

Have you run the IHS SAC Checker Utility (^AZHLSC) and cleaned up
any pertinent errors?

Have you run the VA Cross Referencer (^XINDEX) and cleaned up any

Policies and Procedures
27 September 2005

Standards and Conventions 	 Developers’ Handbook

If this is not a VA package, have you run the XB Developer utilities to
set the first 2 lines in your routines and to set version numbers and
authorities on your data dictionaries?

Have you submitted any requests for exemption from the SAC?

Are the manuals ready to submit with the package?

Have you named the KIDS build and any other transport files correctly?

Have you tested the install of this final build?

Have all references to test versions been removed?

If this is a patch, have you created a notes file using the template found
in section 1.4.6.6.3.

1.8 Procedure for Submitting Patches to Certified RPMS Software

1.8.1 Introduction
The National Patch Module (NPM) is a software package designed to provide a
database for the distribution of software patches and updates for certified IHS
software. Options provide for systematic entry, review and completion of patches by
developers, review and release of patches by verifiers, and display and distribution of
the released verified patches to the users.

Once a problem is found in RPMS software and the solution identified, the developer
enters a patch in the NPM identified by its namespace, version and patch number.
The patch is assigned a status of "under development" and is accessible only by other
developers. When the patch is completed and ready for review, a second developer
changes the status to "completed/unverified" making the patch available for review
by the verifiers. After the verifier(s) have checked the patch and determined that it is
ready for release, the status is changed to "verified". The patch then is available for
viewing by users and is distributed to all Areas. A master directory of current patches
resides in the public directory.

1.8.2 Patch Process
1.	 Access: Developers have access to a package by being defined for that

package in the DHCP Patch/Problem Package file (#11007).

Policies and Procedures
28 	September 2005

Standards and Conventions 	 Developers’ Handbook

2.	 Adding Patch: The Developer is responsible for adding a patch to the
package. A patch designation (i.e., package namespace*version*patch
number) is generated for the patch and status is set to "under development".
The patch may now be edited by the responsible developer.

3.	 Dependencies on Other Patches: To help in the development and release of
patches that are dependent on other patches, there is an ASSOCIATED
PATCHES field where other patches may be entered as references. If the
associated patch has to be verified and installed first, it may be flagged to
prevent verification of the patch being edited until the associated patch is
verified. There is a HOLD DATE field that can be used to prevent
verification/release until a certain date. IHS patches must be cumulative, i.e.,
contain all previous patches to that package version.

4.	 Completing the Patch: Patches are to be completed by another developer
who has reviewed the patch to determine if the fix is as it claims. Upon
completion of the review by the second developer, the status of the patch is
changed to "completed". A completed-unverified message is generated to the
SQA automatically.

5.	 Verifier/Support Access: Verifiers have access to a package by being
defined as support personnel and verifier for that package in File #11007.
The verifier will review the patch for conformance with RPMS SAC and
report findings, if any, back to the respective developer. Upon passing
certification, the verifier will change the patch’s status to "Verified". The
patch will then be distributed to all Areas and placed in the master patch
directory on the public directory.

6.	 Support Personnel: Users may select packages to enable automatic
notification of new verified patches. Users who have selected a package for
notification can also utilize an option which will print all new verified patches
for a selected package.

1.8.3 Patch Files
Standards: Files for patches are to be submitted to the SQA following the formats
outlined in the RPMS SAC.

1.8.4 Patch Module Manuals
For more details on the NPM, see the VA DHCP Documentation for NPM

Policies and Procedures
29 	September 2005

Standards and Conventions 	 Developers’ Handbook

1.9 Software Maintenance & Support
Once a new version of an RPMS application has been released, fixes and
enhancements to the old version will not be made starting 18 months after the release
date. Sites will continue to receive emergency support for the old version and will be
assisted in upgrading to the current version.”

1.10 	 Local Modifications to Data Dictionaries, Data Elements,
and Routines in Class I Packages

Modifications to core data dictionaries, or dictionaries associated with Class I
software must be restricted to adding new data elements and creating input and output
templates to meet specific local needs. In order to assure the capability of installing
new releases of the application packages, it is important that any local additions to the
database be made in areas that will not conflict with elements contained in the
nationally distributed database and should be coordinated with the DBA or be made a
sub package so the changes can be reinstalled after a new dictionary release.

When adding new data elements to a data dictionary, the numbering conventions used
for creating new files should be used for data elements. That is, a data element
number should be entered that is in the numbering range of the Area making the
change (or the sub-range of numbers assigned to a specific IHS site). The same
numbering convention should be applied to global subscripts for local data add-ons to
previously defined globals. Sub-files numbers should be assigned in an analogous
fashion, putting the number after the decimal point.

When input or output templates are incorporated into the option file, the options
names should be prefixed by the namespace followed by "Z" and the letter assigned
to the Area making the addition. For example, a local option called LOG for the PS
package made in the Tucson Area would have the option name "PSZSLOG". This
will allow a site to readily differentiate between those options developed locally and
those associated with the standard package, and will prevent collisions.

Any other types of local data modifications to the core and Class I packages are
strongly discouraged. If local modifications are made to existing data elements in the
data dictionaries, it will then be the responsibility of the site to maintain those
modifications as new versions of the package are installed. Furthermore, should a
data element be modified that is used in standard external reports, it will be the
responsibility of the facility to ensure that the modification will not affect the
accuracy or validity of the data contained in the report.

Class I software carries with it the guarantee that the Office of Information
Technology (OIT) will support and maintain that software in conjunction with staff at
the sites of installation. Local modifications of Class I routines invalidates that
guarantee and transfers maintenance and support responsibility from the OIT to the

Policies and Procedures
30 	September 2005

Standards and Conventions Developers’ Handbook

modifying site. Debugging local variations of Class I software and assessing the
"ripple effects" that such changes may have throughout the module are not the
responsibility of the OIT.

Policies and Procedures
31 September 2005

Standards and Conventions Developers’ Handbook

.
listed here.

VA Kernel Systems Manual:

Major sections with
useful APIs are:

• Device Handler
• Task Manager
• KIDS (Kernel Installation and Distribution System)
• Date, Math and String Functions Library

VA Mailman Programmer Manual:

VA List Manager Developer’s Guide:

Parameter Tools (Kernel Toolkit additional document titled
ktk7_3p26sp.pdf)

VA FileMan Programmer Manual

interaction)

VA FileMan User Manual

ScreenMan Tutorial for Developers
entry screens using the VA ScreenMan tool.

Formatting Codes: Examples: Explanations:

2.0 Developers’ Tools

2.1 References to VA System Utilities

2.1.1 VA Infrastructure Manuals
All the following VA infrastructure manuals can be found at
ftp.va.gov/vista/vistAdocs/Infrastructure/ Several more manuals are available than are

All RPMS developers should become very
familiar with this manual. It contains documentation on several APIs as well as
tools to be used in your development and testing process.

 Contains APIs for sending mailman
messages and bulletins.

Contains information for building and
maintaining list templates with attached protocols and accompanying APIs.

: Documents the use of parameterization which is now required
for IHS modifications to VA routines.

: Documents data dictionary structures and
well as programmer APIs (both silent calls and those with built-in user

 : Important documentation on basic FileMan
functionality. All RPMS programmers must be very familiar with them.

: Documents how to build and maintain data

2.1.2 FileMan Sorting: Crib Sheet

Developers’ Tools
32 September 2005

Standards and Conventions Developers’ Handbook

Formatting Codes: Examples: Explanations:
Sort Options
C-Column Assignment SORT BY: Sex;C30 Print Sex sub-header in

column 30
S-Skip Lines SORT BY: Sex;S2 Skip 2 lines before printing

the next sex sub-header
L-Left Justify SORT BY: Nursing Home;L10 Print only the first 10

characters of the Nursing
Home as the sub-header

" "-Print Your Header SORT BY: Sex;"Gender" Prints Gender: as a sub-
header rather than Sex

@-Supress Sub-Header SORT BY: @SEX Sorts by the selected field but
suppresses the Sub-Header

Sort Functions
!-Ranking Numbers SORT BY: !Nursing Home Items printed under Nursing

Home sub-header will have
ranking numbers

+-Sub Totals SORT BY: +Nursing Home All print fields with !,&,+,or#
will be sub-totaled at each
new sorted by value

#-Form Feed SORT BY: #Nursing Home A form feed will be generated
at each new sorted by value

- Reverse Order SORT BY: -Days Of Care Will reverse order of print
from lowest-highest to
highest-lowest order

'-Select Entries SORT BY: 'Placement Date Selects items only, rather than
selects and sorts

Special Features
@ at START WITH SORT BY: Days Absent Prints all entries with a value
prompt START WITH DAYS ABSENT: @ in the days of care field first

followed by null values for
that field

@ at the START WITH SORT BY: Days Absent Prints only entries with null
and GO TO prompt START WITH DAYS ABSENT: @ values for in the days of care

GO TO DAYS ABSENT: @ field
Templates
] forces FileMan to offer SORT BY:] Forces FileMan to offer you a
a template prompt FIRST PRINT FIELD:] template
[used to call a template SORT BY: [VINCE Calls a previously created

FIRST PRINT FIELD: [VINCE template sort or print template
named Vince

[? will show all templates SORT BY: [? Shows all sort or print
available to the user FIRST PRINT FIELD: [? templates
^ inserts THEN PRINT FIELD:SEX//^SSN Inserts a field before another

THEN PRINT FIELD: SEX// field

Developers’ Tools
33 September 2005

Standards and Conventions Developers’ Handbook

Formatting Codes: Examples: Explanations:
@ deletes THEN PRINT FIELD: SEX//@ Deletes a field

Note: Any changes must
be re-saved.
BOOLEAN LOGIC
= Equal SORT BY: NAME// Equal finds exact matches

SEX="MALE"
> Greater Than SORT BY: NAME// DAYS

ABSENT>3
Finds all entries with DAYS
ABSENT values greater than
three

< Less Than SORT BY: NAME// DAYS
ABSENT<3

Finds all entries with DAYS
ABSENT values less than
three

[Contains SORT BY: NAME// NAME["AR" Finds all names having the
letters 'AR' in them

] Follows SORT BY: NAME// NAME]"ST" Finds all names starting with
'ST' to the end of the alphabet
(STEVENS to TURNER)

! OR SORT BY: NAME// Finds entries with 'AR' in the
NAME["AR"!(SEX=”MALE”) name or the sex is male

& AND SORT BY: NAME// Finds entries with 'AR' in the
NAME["AR'&(SEX="MALE") name and the sex is male

' Apostrophe SORT BY: NAME// NAME'["AR" Negates any condition; Finds
all entries with-out AR in the
name

2.1.3 FileMan Printing: Crib Sheet

Formatting Codes: Examples: Explanations:
Print Options
C-Column Assignment FIRST PRINT FIELD: Name;C10

FIRST PRINT FIELD: Name;C-30
Print Name in column 10
Print Name 30 columns from
the right margin

S-Skip Lines FIRST PRINT FIELD: Name;S1 Skip 1 line before printing the
next name

L-Left Justify FIRST PRINT FIELD: Name;L8 Print only the first 8 characters
of the name

R-Right Justify FIRST PRINT FIELD: Name;R30 Right justify the columns from
the end of the last value plus 2
column spaces

W-Word Wrap FIRST PRINT FIELD: Text;W20 Wrap after 20 columns of text
but will not split words

Developers’ Tools
34 September 2005

Standards and Conventions Developers’ Handbook

Formatting Codes: Examples: Explanations:
D-Decimal Points FIRST PRINT FIELD: Cost;D1 Use only one decimal place
N-No Repeat FIRST PRINT FIELD: Nursing;N Will not repeat consecutive

occurrence of the same name
Y-Start at Row FIRST PRINT FIELD: Name;Y10 Start printing 10 rows from

the top
@-Suppress Heading FIRST PRINT FIELD: Name;Y-10 Start printing 10 rows from

the bottom
X-Suppress Spacing HEADING: CONTRA..Replace @ Suppresses the entire Heading
" "-Print Your Header FIRST PRINT FIELD: .01 Suppress spacing THEN

PRINT FIELD : SSN;X
between the name and the
SSN

_ Concatenate (Join) FIRST PRINT FIELD: Sex;"S" Prints S as a column header
rather than Sex

other :-Forward
Pointing

FIRST PRINT FIELD: City_",
"_State
FIRST PRINT FIELD: Nursing
Home:
THEN PRINT CONTRACT

Joins field values with literals
or other fields
Follows the Nursing Home
pointer field to the Nursing
Home file

NURSING HOME FIELD:
Arithmetic Operators:
!-Counts Any Field FIRST PRINT FIELD: !Sex Counts the entries that have

values in the Sex field
&-Totals Numerics FIRST PRINT FIELD: &Cost Totals numeric fields
+-Totals,Count&Mean FIRST PRINT FIELD: +Cost Totals and Counts fields and

provides a mean value
#-Totals,Count,Mean FIRST PRINT FIELD: #COST Minimum,Maximum, &

Totals and Counts fields and
Standard Deviation provides a
minimum value and a
maximum value found with
the deviation

Binary Operators:
+ Addition FIRST PRINT FIELD: SPER DIEM Add 10 to the Skilled Per

RATE+10 Diem Rate
- Subtract FIRST PRINT FIELD: SPER DIEM Subtract 10 from the Skilled

RATE-10 Diem Rate
* Multiply FIRST PRINT FIELD: SPER DIEM Multiply Skilled Per Diem

RATE*30 Rate by 30
/ Divide FIRST PRINT FIELD: NURSING

HOME COST/DAYS OF CARE
Divide the Total Nursing
Home Cost by the Total Days
of Care

\ Integer Division FIRST PRINT FIELD: TODAY- Divide the Age by 365.25
DATE OF BIRTH\365.25 leaving off all remainders

Developers’ Tools
35 September 2005

------------- ----------- ---------------

Standards and Conventions Developers’ Handbook

2.1.4 ScreenMan Help: Crib Sheet
Cursor Movement

Move right one character
Move left one character
Move right one word
Move left one word
Move to right of window
Move to left of window
Move to end of field
Move to beginning of field

<Right>

<Left>

<Ctrl-L> or <PF1><Space>

<Ctrl-J>

<PF1><Right>

<PF1><Left>

<PF1><PF1><Right>

<PF1><PF1><Left>

Modes

Insert/Replace toggle <PF3>
Zoom (invoke multiline editor) <PF1>Z

Deletions

Character under cursor <PF2> or <Delete>

Character left of cursor <Backspace>

From cursor to end of word <Ctrl-W>

From cursor to end of field <PF1><PF2>

Toggle null/last edit/default <PF1>D or <Ctrl-U>

Macro Movement

Field below <Down> | Next page <PF1><Down> or <PageDown>

Field above <Up> | Previous page <PF1><Up> or <PageUp>

Field to right <Tab> | Next block <PF1><PF4>

Field to left <PF4> | Jump to a field ^caption

Pre-defined order <Return> | Go to Command Line ^

Go into multiple or word processing field <Return>

Command Line Options (Enter '^' at any field to jump to the command line.)

Command Shortcut Description

EXIT see below
CLOSE <PF1>C
SAVE <PF1>S
NEXT PAGE <PF1><Down>
REFRESH <PF1>R

Exit form (asks whether changes should be saved)
Close window and return to previous level
Save changes
Go to next page
Repaint screen

Other Shortcut Keys

Developers’ Tools
36 September 2005

Standards and Conventions Developers’ Handbook

Exit form and save changes <PF1>E
Quit form without saving changes <PF1>Q
Invoke Record Selection Page <PF1>L

2.1.5 Full Screen Editor: Crib Sheet

Summary of Key Sequences

Navigation

 Incremental movement Arrow keys
One word left and right <Ctrl-J> and <Ctrl-L>
Next tab stop to the right <Tab>

 Jump left and right <PF1><Left> and <PF1><Right>
Beginning and end of line <PF1><PF1><Left> and <PF1><PF1><Right>
Screen up or down <PF1><Up> and <PF1><Down>

or: <PrevScr> and <NextScr>
or: <PageUp> and <PageDown>

 Top or bottom of document <PF1>T and <PF1>B
Go to a specific location <PF1>G

Exiting/Saving

 Exit and save text <PF1>E
Quit without saving <PF1>Q
Exit, save, and switch editors <PF1>A
Save without exiting <PF1>S

Deleting

 Character before cursor <Backspace>
Character at cursor <PF4> or <Remove> or <Delete>

 From cursor to end of word <Ctrl-W>
 From cursor to end of line <PF1><PF2>

Entire line <PF1>D

Settings/Modes

 Wrap/nowrap mode toggle <PF2>
 Insert/replace mode toggle <PF3>

Set/clear tab stop <PF1><Tab>
 Set left margin <PF1>,

Developers’ Tools
37 September 2005

Standards and Conventions Developers’ Handbook

 Set right margin

Status line toggle

Formatting

 Join current line to next line
 Reformat paragraph

Finding

 Find text
Find next occurence of text
Find/Replace text

Cutting/Copying/Pasting

 Select (Mark) text
 Deselect (Unmark) text

Delete selected text
Cut and save to buffer
Copy and save to buffer

 Paste from buffer
Move text to another location
Copy text to another location

<PF1>.

<PF1>?

<PF1>J

<PF1>R

<PF1>F or <Find>

<PF1>N

<PF1>P

<PF1>M at beginning and end of text
<PF1><PF1>M
<Delete> or <Backspace> on selected text
<PF1>X on selected text
<PF1>C on selected text
<PF1>V
<PF1>X at new location
<PF1>C at new location

2.2 IHS System Utilities (XB)

2.2.1 Summary / Overview
This document is designed primarily for RPMS application programmers. Area and
Site IRM personnel can find this document helpful in understanding how the XB/ZIB
utility routines. These utilities are provided as a result of the pursuit to use cpu cycles
to save programmer cycles, enhance productivity, and enhance support ability.

The IHS/VA Utilities are in the XB namespace for routines that are not MUMPS (M)
implementation specific. Routines that are implementation specific will be in the ZIB
namespace.

Programmer tools are available from programmer mode thru the menu-driver routine
XB. There are no files associated with the XB/ZIB package.

Developers’ Tools
38 September 2005

Standards and Conventions Developers’ Handbook

2.2.2 Routine Descriptions

2.2.2.1 XB
This routine lists available utilities in the form of a menu with a brief description of
what the utility does. New utilities may be added to this routine by adding the
appropriate “;;” entries to the bottom of this routine. See routine XB1 for further
documentation and the menu options for the XB/ZIB Utility package.

2.2.2.2 XB1
In this routine each label represents a menu.

2.2.2.3 XBARRAY*
This utility provides a word processing format of free text and local variable
references to build an array.

2.2.2.4 XBBPI
This routine builds a pre-init routine for a specified package. The pre-init routine will
delete FileMan dictionaries being created by the package. Data globals and templates
will be saved.

2.2.2.5 XBCLM
This routine displays a column number header followed by the passed string.

2.2.2.6 XBCLS
This routine clears the screen.

2.2.2.7 XBCNODE
This routine counts unique values in a selected global node.

2.2.2.8 XBCSPC
This routine checks selected fields to see what percent of the time it exists in the
entries in a file, and if it should be unique, makes sure it is unique.

Developers’ Tools
39 September 2005

Standards and Conventions 	 Developers’ Handbook

2.2.2.9 XBAD0
This routine sets the DA array from D0, D1, etc., or D0, D1, etc., from the DA array.
If the variable XBDAD0=2, it sets the DA array, otherwise, it sets D0, D1, etc.

2.2.2.10 XBDATE
This routine limits routines selected by %RSEL to routines edited after some date.

2.2.2.11 XBDBQDOC
This routine contains double queuing shell handler documentation.

2.2.2.12 XBDBQUE
This utility gives the programmer a very friendly way to provide single, double, or no
queuing at all to the applications. Report programming is structured into a compute
routine, a print routine, and an exit routine. The call to XBDBQUE handles all the
devices and host files as necessary.

•	 %ZIS with "PQM" is called by XBDBQUE
•	 The user will be asked to queue if queuing has not been selected.
• IO variables as necessary are automatically stored.
•	 XBDBQUE can be nested. The compute and print phases can call XBDBQUE

individually (XBIOP is then required)
•	 The appropriate %ZTSK node is killed.

Input Variables
(Mandatory)

Either XBRC = Compute Routine

Or XBRP = Print Routine

(Optional)

XBRC = Compute Routine
XBRP = Print Routine
XBRX = Exit Routine that cleans variables (Highly Suggested)
XBNS = Namespace of variables to auto load in

ZTSAVE("NS*")=""
= "DG;AUPN;PS;..." ; (will add '*' if missing)

Or
XBNS("xxx")="" 	 Where xxx is structured as in ZTSAVE variable

arrays where xxx is as described for
ZTSAVE("xxxx")=""

Developers’ Tools
40 	September 2005

Standards and Conventions 	 Developers’ Handbook

XBFQ = 1 Force Queuing
XBDTH = FM date time of computing/printing
XBIOP = pre-selected printer device constructed with ION ;

IOST ; IOSL ; IOM (mandatory if the calling routine is a
queued routine itself)

XBPAR = %ZIS("IOPAR") values for host file with XBIOP, if
needed

EX: 	S XBRC="C^AGTEST",XBRP="P^AGTEST"
S XBRX="END^AGTEST",XBNS="AG"
D ^XBDBQUE ;handles foreground and tasking
Q

2.2.2.13 XBDIQ0
Documentation routine for XBDIQ1.

2.2.2.14 XBDIQ1
This utility provides an easy pulling of data from the FM data base. The data is
returned in an array and format designated by the programmer. (An enhanced
EN^DIQ1)

Input Variables
The following variables are the same as for EN^DIQ1 but with friendlier results.

1.	 Data arrays are returned into the target array, @DIQ, in a variety of formats
controlled by the setting of DIQ(0). The default return array is @DIQ(Field
Number)= external value of field of the field.

2.	 Data retrieval is antiseptic! It does not disturb any local variables.
3.	 The input variable DA can either be an array or a literal of explicit values or a

literal of variables.

Entry Points
ENP^XBDIQ1(DIC,DA,DR,DIQ,DIQ(0))

Returns @DIQ(FLD)= data for One Entry for fields indicated in DR

ENPM^XBDIQ1(DIC,DA,DR,DIQ,DIQ(0))
Returns @DIQ(DA,FLD)= data for Multiple Entries
DIC("S") can be set and used for screening entries

For ENPM the lowest level DA must be set to 0 (zero)

$$VAL^XBDIQ1(DIC,DA,DR)

Developers’ Tools
41 	September 2005

Standards and Conventions 	 Developers’ Handbook

Returns External value of one field.

$$VALI^XBDIQ1(DIC,DA,DR)

Returns Internal value of one field.

$$DIC^XBDIQ1(DIC)
Returns constructed DIC from file/subfile number

Input Variables

DIC, DR, DIQ are defined as in the call to EN^DIQ1

DIQ(0) Format Options

If DIQ(0) is not present the default is set to NULL

0 OR NULL @DIQ(FLD) = external data base
value

1 @DIQ(DA,FLD) = ""
2 @DIQ(DA(x),..,DA,FLD) = ""

(1 or 2)_I @DIQ(...,FLD,"I") = internal data base value

(1 or 2)_N NULL fields are not returned

DA 	 Can be the array DA or a literal string in descending order. The literal
string may be made up of explicit values or variables.

EX: DA = "1,23,45"

Or DA = "1,PATDFN,BLDFN"

Or DA = BARVDA("EOBSUB") :: ="BAFCLDA,BARITDA,BAREDA"

For ENPM the lowest level DA must be set to 0 (zero)

2.2.2.15 XBFORM*
This utility provides two entry points. The first is the editing of a word processing
form where free text and markers for variables are placed. The second is for the
generation of an array as defined by the form being referenced. Several options in the
form definition enhance its flexibility. XBFORM0 contains the XBFORM
documentation.

Developers’ Tools
42 	September 2005

Standards and Conventions Developers’ Handbook

The programmer must supply a file for the forms with the .01 field being the name of
the form and another field that is a WP field to hold the form itself.

(Requires XBLM and VALM utilities to be present.)

Entry Points

EDIT^XBFORM(NAME,DIC,FLD)

Edits and displays the form. Place the call to EDIT in the code where the
data or variables have been gathered. Typically this is one line previous to
the call to $$GEN^XBFORM. Once the form is designed the EDIT call is
commented out. It uses XBLM to display the run time data as it will be
structured into the array.

Exiting the editor portion the XBLM display can also provide markers in
the document for those that are working with forms.

See FORM DEFINITION OPTIONS for instructions on format options
within the form.

Input Variables

NAME Name of form.

DIC File number of the file with the forms

FLD Field number of the WP field holding the form

definition.

Y = $$GEN^XBFORM(NAME,DIC,FLD,%Y,FORMAT,OFFSET)

Generates the form into the root array indicated by %Y. The call to
$$GEN must have all variables referenced already present in the partition.
The return value of $$GEN is equal to the last line set in the array.

Input Variables

NAME Name of form.

DIC File number of the file with the forms.

FLD Field number of the WP field holding the form

definition.

NAME Name of the form

%Y The root of the target array to be built. Either a global
or a variable root as in the format used for a %XY^%RCR
call. (%RCR is actually used)

Developers’ Tools
43 September 2005

Standards and Conventions Developers’ Handbook

FORMAT

OFFSET

null or zero The array is built
%Y(line)="...

1 The array is built %Y(line,0)=".... as
used by VALM.

The offset is line numbers in building the array. The array
will start construction at OFFSET +1. The value of the last
line created is returned $$GEN.

WP Format Definition Options

Free Text: Free text is key stricken where desired. Do not use "~" as it
is used to mark variables and their placement.

Variables: The reference to a variable is marked with a beginning "~"
and a trailing "~". The trailing ~ is always required even if
the variable is last item on the line.

Functions

Comment Line Programmers comments can be put into the form and are
ignored by the generator.

Mnemonic Variables

This is a short hand for variables.

Output Transform

Mumps code can be input that will transform a selected variable’s output.

Functions

Comment Line Begin the line with a ';'

Mnemonic Variable

Namespaced variables can be long. A mnemonic reference is available to
make life simple. Mnemonic definitions are place at the top of the form.
Mnemonic variables then can be placed anywhere in the form.

Begin each line of definition with a '#'. The mnemonic is separated from it
reference by a '|' (vertical bar). Multiple mnemonic references on the same
line are separated by '*'

Mnemonic definitions are placed at the top of the form

Developers’ Tools
44 September 2005

Standards and Conventions 	 Developers’ Handbook

(M|R) MNEMONIC|REFERENCE

Example: 	 #D|DUZ*V|BARVPT
#I|BARIPT

~D 	 will be interpreted as meaning ~DUZ
~V 	 will be interpreted as meaning ~BARVPT
~I 	 will be interpreted as meaning ~BARIPT

(BARIPT is an array storing IHS Patient Information)
(BARVPT is an array storing VA Patient Information)

MNEMONIC MARKER

The mnemonic markers can be used anywhere in the WP
form. It is marked by a beginning and ending pair of '~'s. A vertical
bar separates the mnemonic and the value of the subscript.

(M|S) MNEMONIC|SUBSCRIPT

Format ~mnemonic|variable subscript~

Example ; following the mnemonic reference definition

Define #D|DUZ*I|BARIT

~D|~ for DUZ
~D|0~ for DUZ(0)
~I|.01~ for BARIPT(.01)

Output Transform

A MUMPS expression of X. 'X' must be used literally in the function defined.

A simple mumps output transform capability is also provided to aid in form
design. A variable or mnemonic indicated will have its output transformed prior
to being put into the form. The definition line is placed at the top of the form. It is
started with a '*', followed by the variable reference, followed by a ':', and then
the function of x 'f(x)' to be performed. Multiple lines can be used and multiple
outputs defined on a line separated by a '*'.

Setup

*var1:mumps code1*var2:mumps code2
*mnemonic3:mumps code3*mnemonic4:mumps code4

Ex: 	 *DUZ(2):$J(X,10,2) will transform ~DUZ(2)~ to $J(DUZ(2),10,2)
*D|2:$J(X,10,2) mnemonic notation of same

Developers’ Tools
45 	September 2005

Standards and Conventions Developers’ Handbook

Special Output Transforms provided by XBFORM

$$MDY(X) Returns a date format of MM/DD/YY

Many times only a mm/dd/yy is desired. This function automatically converts any
external date to mm/dd/yy. (An external form of date is returned by XBDIQ1.

*M|S:$$MDY(X) a literal ~"NOW"~ or variable ~IT|9~
ex: *"NOW":$$MDY(X) or *IT|9:$$MDY(X)

 returns mm/dd/yy

$$WP("X") Word Processing field printing

Word Processing fields are handled by this output transform.

*M|S:$$WP("X") for a word processing field array ~M|S~

NOTE: "X" THE QUOTES ARE ABSOLUTELY NECESSARY!

The variable array must have the form
VAR(subscript,n) where n = 1:1

$$FL(X) Fill Lines

Sometimes it is necessary to jump to a specific line

Blank lines are used to fill from the present line through the line indicated.

*19:$$FL(X) ~19~ fill lines through 19 with a " "

TIPS for VALM Users

The compilation of the form resides in the ^TMP($J,"XBFORM","Form Name", nodes.
Those subscripts are organized ..."Form Name",Line,Column)=. Lines and columns are
straight forward for text and variables start at their column +.5 to indicate the expression
has to be evaluated. If the $$FL output transform has been used, the programmer will
have to calculate the new line numbering offsets manually.

Adding video attributes with VALM calls needs to be done within the INIT lines of the
VALM program being called.

Examples of XBFORM Calls

BARFORM0 ; IHS/ADC/PDW - FORMS FOR XBFORM ; [07/06/95 11:03 AM]
;;1.0c4;IHS ACCOUNTS RECEIVABLE;;JUN 21, 1995

TEST ;;

;** set up variables

D ENP^XBDIQ1(200,DUZ,".01:.116","BARU(")

;** setup a word processing field

Developers’ Tools
46 September 2005

Standards and Conventions Developers’ Handbook

 F I=1:1:5 S BARWP(101,I)=" LINE "_I_" has the value of "_I
 ;** setup form name
 S BARFORM="PW TEST"
 ;** call form editor

D EDIT^XBFORM(BARFORM,90053.01,1000)
;** call array generator
S LASTLINE=$$GEN^XBFORM(BARFORM,90053.01,1000,"BARFM(",0)
Q

Editor Form Example

;------ Mnemonic References Definitions

#G|BARU*D|DUZ

#W|BARWP|

;------ Output Transforms - Mumps Expressions - $$MDY - $$WP("X") - $$FL(X)

*"TODAY":$$MDY(X)

*DUZ(2):$J(X,10,2)

*W|101:$$WP("X")

*39:$$FL(X)

;----------------------------------START OF FORM---------------------

DUZ DUZ(2) DUZ(0) DT

Variable Reference ~DUZ~ *~DUZ(2)~ ~DUZ(0)~ ~DT~

 Mnemonic|Subscript ~D|~ ~D|2~ ~D|0~

* DUZ(2) has a $J(X,10,2) output transform
 /-----------------------------------\

| NAME ~G|.01~ |

| ADD2 ~G|.112~ |

 | ADD3 ~G|.113~ |

 | CITY ~G|.114~ |

| STATE ~G|.115~ |

| ZIP ~G|.116~ |

\-----------------------------------/

TERMINAL CHARACTERISTICS

TYPE ~IOST~

R MAR ~IOM~

FORM LENGTH ~IOSL~

Word processing example W|101 with an output transform W|101:$$WP("X")

===

=

~W|101~|

===

=

Developers’ Tools
47 September 2005

Standards and Conventions Developers’ Handbook

SKIP TO LINE 40

~39~

LINE 40

/////////

END OF FRAME

ARRAY GENERATION EXAMPLE

[DEV,DSD]>ZW BARFM

BARFM(1)=" DUZ DUZ(2) DUZ(0) DT"

BARFM(2)=" "

BARFM(3)=" Variable Reference 60 * 1546.00 @ 2950706"

BARFM(4)=" Mnemonic|Subscript 60 1546 @"

BARFM(5)=" * DUZ(2) has a $J(X,10,2) output transform"

BARFM(6)=" "

BARFM(7)=" /-----------------------------------\"

BARFM(8)=" | NAME WESLEY,PAUL |"

BARFM(9)=" | ADD1 PO BOX 958 |"

BARFM(10)=" | ADD2 'CRAVEN ELMS MOBILE HOME |"

BARFM(11)=" | ADD3 ' #5 |"

BARFM(12)=" | CITY EDGEWOOD |"

BARFM(13)=" | STATE NEW MEXICO |"

BARFM(14)=" | ZIP 87015 |"

BARFM(15)=" \-----------------------------------/"

BARFM(16)=" "

BARFM(17)=" "

BARFM(18)=" TERMINAL CHARACTERISTICS"

BARFM(19)=" TYPE C-VT100"

BARFM(20)=" R Mar 80"

BARFM(21)=" FORM LENGTH 24"

BARFM(22)=" "

BARFM(23)="Word processing example W|101 with an output transform

W|101!$$WP("X")"

BARFM(24)="==

="

BARFM(25)=" LINE 1 has the value of 1"

BARFM(26)=" LINE 2 has the value of 2"

BARFM(27)=" LINE 3 has the value of 3"

BARFM(28)=" LINE 4 has the value of 4"

BARFM(29)=" LINE 5 has the value of 5"

BARFM(30)="==

=

BARFM(31)="SKIP TO LINE 40"

BARFM(32)=" "

BARFM(33)=" "

BARFM(34)=" "

Developers’ Tools
48 September 2005

Standards and Conventions 	 Developers’ Handbook

BARFM(35)=" "

BARFM(36)=" "

BARFM(37)=" "

BARFM(38)=" "

BARFM(39)=" "

BARFM(40)="LINE 40"

2.2.2.16 XBLM
XBLM provides simplified utility entry points for the programmer to utilize the
VALM utility without having to design their own browser. It has an interface already
built in to access the host file systems so that hard coded or FM generated displays
can be loaded into the browser. It also has an array entry point.

This utilizes and requires the presence of the VALM software as distributed by the
VA and/or IHS.

Requirement
The VALM software must be installed and inited.

The DEFAULT HOST FILE as identified in FILE(1) by $$PWD^%ZISH(.FILE)
must have its permission for WR and group set for RPMS users.

D ^XBONIT Installs the XBLM Protocol
D ^XBL Installs the XBLM List Manager Template.

Entry Points
FILE^XBLM("Directory","File Name")

Displays file indicated

Directory Host file directory
File Name File Name to be displayed

SFILE^XBLM 	 Manual selection of host file for display. Allows the user
real time access to host files. Wildcarding of the file during
selection is allowed.

VIEWR^XBLM("TAG^ROUTINE","Header")

Displays printout of the routine. (non - FM, using IO)

VIEWD^XBLM("TAG^ROUTINE","Header")

Displays printout of the routine. (FM - using EN1^DIP)

Developers’ Tools
49 	September 2005

Standards and Conventions Developers’ Handbook

DIQ^XBLM("DIC","DA")

Displays EN1^DIQ for the DIC,DA

ARRAY^XBLM("ARRAY(","Header")

Displays the array(...,n,0) as necessary in VALM format.

2.2.2.17 XBNEW
This routine provides the programmer with a SACC-approved manner of performing
an exclusive NEW preserving the required Kernel variables at the same time. It also
includes wild carding.

Entry Point
EN^XBNEW("TAG^ROUTINE","Variable List")

Input Variables
"TAG^ROUTINE" The routine to be executed within the exclusive newed
environment.

"Variable List" The list of variables to be carried into the exclusive newed
environment.

EX: "AGDFN;AGINS;AGP*" Wild card allowed.

Required Kernel variables are automatically added to the list.

2.2.2.18 XBDH*
XBDH is the Header Editor main routine. XBDHD sets basic info about file and
fields. XBDHD1 compiles header line. XBDHD2 works with special choices.
XBDHDF gets field information for header line editor. XBDHDF1 checks jump
syntax. XBDHDIP is an overlay of DIP2 for Auto FileMan. XBDHDSV compiles
header info for auto entry into DIP. XBDHDSP puts spaces between headers.

2.2.2.19 XBDHNTEG
XB integrity checker.

2.2.2.20 XBDICV
This routine sets FileMan dictionary version numbers.

Developers’ Tools
50 September 2005

Standards and Conventions Developers’ Handbook

2.2.2.21 XBDIE
Use this routine to nest DIE calls.

2.2.2.22 XBDIFF
The difference between two dates/times is returned with this routine.

2.2.2.23 XBDINUM
Use to convert a non-dinum file to a dinum file.

2.2.2.24 XBDIR
The purpose of this routine is to provide an interface methodology for a call to ^DIR,
to ensure correct handling of variables, and to provide for the expressiveness of an
extrinsic function.

2.2.2.25 XBDR*
This routine builds a string which sets variables DIR and its descendants for use in a
routine. The string is stored in the variable “%”, and in the “Temp” storage area for
the screen editor for the current device.

2.2.2.26 XBDSET
This routine selects FileMan dictionaries individually, by a range, or for a specific
package. This routine can be called from another routine by setting the variables
XBDSLO, XBDSHI, and then D EN1^XBDSET.

2.2.2.27 XBENHANC
This routine prints enhancements to a package from the entry in the package file.
Entry point EN^XBENHANC(ns) is used with the caller providing the namespace of
the package.

2.2.2.28 XBFCMP
This routine compares FileMan files in two UCIs.

Developers’ Tools
51 September 2005

Standards and Conventions Developers’ Handbook

2.2.2.29 XBFDINFO
Given a file/subfile number, a field number, and an array root, this routine will return
information about the specified field. The information will be returned as a
subscripted variable from the root passed by the caller.

2.2.2.30 XBFIXL1
This routine asks the user to select a set of routines, for the programmer information,
and standardizes the format of the first line of each routine.

2.2.2.31 XBFIXPT
This routine fixes all “PT” nodes for files 1 through highest file number in the current
UCI.

2.2.2.32 XBFLD*
This routine lists dictionaries which may be selected individually or by a range of
dictionary numbers. XBFLD0 prints field triggers.

2.2.2.33 XBFMK
This routine kills variables left by FileMan.

2.2.2.34 XBCDIC*
This routine cleans up ^DIC and ^DD. XBCDIC2 checks dictionary names and data
globals. XBCDIC3 checks ^DD. XBCDICD deletes bad files.

2.2.2.35 XBFIX
This routine counts entries in FileMan files and fixes.

2.2.2.36 XBCFXREF
Use this routine to check and fix cross references.

2.2.2.37 XBCOUNT
This routine counts entries in a FileMan file.

Developers’ Tools
52 September 2005

Standards and Conventions Developers’ Handbook

2.2.2.38 XBFRESET
Routine is used to reset file globals.

2.2.2.39 XBFUNC*
These routines make up the Function Library.

2.2.2.40 XBGC
Use to copy a global at any level.

2.2.2.41 XBGCMP
Routine compares two different globals. XBCMP2 contains help for XBCMP.

2.2.2.42 XBGLDFN
Routine to get last DFN.

2.2.2.43 XBGSAVE
See separate section in this manual for further guidance. Generic global save for
transmission globals.

2.2.2.44 XBGTI
Use to restore globals saved in DSM %GTO format.

2.2.2.45 XBGTOT
Use for fast save to tape.

2.2.2.46 XBGXFR
Routine is used to transfer global trees.

2.2.2.47 XBGXREFS
Use to get cross references for one field in one file.

Developers’ Tools
53 September 2005

Standards and Conventions Developers’ Handbook

2.2.2.48 XBHEDD*
Contains the components for the Electronic Data Dictionary. The EDD provides a
more user friendly method of reviewing data dictionary structures and global
structures. It contains on-line documentation.

2.2.2.49 XBHELP
Use to display help text from a routine.

2.2.2.50 XBHFMAN*
These routines are for the help frame manual.

2.2.2.51 XBKD*
Use to kill DICs and globals.

2.2.2.52 XBKERCLN
Use this routine to clean out Kernel namespace items prior to install.

2.2.2.53 XBKSET
This routine sets minimal Kernel variables.

2.2.2.54 XBKTMP
Use to clean ^TMP nodes for the current job.

2.2.2.55 XBKVAR
This routine sets minimal Kernel variables.

2.2.2.56 XBL
This routine is used for a list template exporter.

2.2.2.57 XBLCALL
Use to provide a list of callable subroutines.

Developers’ Tools
54 September 2005

--

Standards and Conventions Developers’ Handbook

2.2.2.58 XBLML
Use to enter or reset XB display in List Template File for List Manager.

2.2.2.59 XBLUTL
This routine lists all entries in the ^UTILITY global for the current $J where $J is the
first or second subscript. This is most useful from programmer mode. If used thru
the XB menu, ^UTILITY($J) is killed in ^XBKSET before this routine is run.

2.2.2.60 XBLZRO
This routines lists the 0th nodes of FileMan files.

2.2.2.61 XBMAIL
This utility generates a mail message to everyone on the local machine that holds a
security key according to the namespace, range, or single key provided in the
parameter. The text of the mail messages must be provided by the developer, and
passed to the utility as a line reference. The utility uses the first line after the line
reference as the mail message subject, and subsequent lines as the body of the
message, until a null string is encountered. This places an implicit limit on your mail
messages to the maximum size of a routine. Suggested text may be used to inform
the users that a patch has been installed, and to describe any changes in displays or
functionality, or problems addressed, and provide a contact number for questions,

e.g:

Please direct your questions or comments about RPMS software to:
OIT
Albuquerque NM 87110
505-837-4189

2.2.2.62 XBNODEL
This routine sets FileMan dictionaries so users cannot delete entries. Protection is
provided by SET'ing the "DEL" node of the .01 fields in the selected dd's to "I 1".

2.2.2.63 XBOFF
Use to set reverse video off.

2.2.2.64 XBON
Use to set reverse video on.

Developers’ Tools
55 September 2005

Standards and Conventions Developers’ Handbook

2.2.2.65 XBPATSE
Use to search routines for patched versions.

2.2.2.66 XBPFTV
This routine is used to return pointer field terminal value.

NOTE TO PROGRAMMERS; Use entry point PFTV. Do not use the first line of
this routine, as pending initiatives in MDC might make a formal list on the first line
of a routine invalid. Given a file number, file entry number, and variable name into
which the results will be placed, return the terminal value after following the pointer
chain. U must exist and have a value of "^".

Formal list
1) F = file number (call by value)
2) E = file entry number (call by value)
3) V = variable for results (call by reference)

Scratch vars:
D = Flag, 1 = Done, 0 = continue
G = Global for file F

2.2.2.67 XBPKDEL
Programmers can use this routine to remove options, input, sort, print templates, help
frames, bulletins, functions, and if indicated, security keys for a package.

XBPKNSP must be set to the namespace, e.g., "AICD", if this routine is called from a
preinit. If you want security keys deleted, set XBPKEY=1 if this routine is called
from a preinit. Call LIST^XBPKDEL to list all namespaced options, templates, etc.
Call RUN^XBPKDEL to delete all namespaced options, templates, etc. The RUN
and LIST entry points are for programmer use and are not to be called from a preinit.
Preinit calls XBPKDEL directly with variables set as indicated above.

2.2.2.68 XBPOST
XB/ZIB installation postinit.

2.2.2.69 XBPRE
Preinit that checks requirements, etc.

2.2.2.70 XBRESID
This routine deletes residual entries in ^DD by a range of dictionary numbers. A
residual entry is one that has no parent. The process is reiterative, so an entry that has

Developers’ Tools
56 September 2005

Standards and Conventions Developers’ Handbook

a parent in ^DD, and the parent is deleted because it has no parent, will also be
deleted. The parent of an entry in ^DD is defined as another entry in ^DD for
sub-files, and an entry in ^DIC for primary files.

The range of dictionary numbers is inclusive but residual entries for the high file
number will not be deleted at the sub-file level. This is because sub-files are
numbered with the primary file number with decimal numbers appended. The
terminating check is ^DD entry greater than high file number specified, so by
definition all sub-files for the high number are greater than the high number.

This routine can be called by another routine by setting XBRLO and XBRHI and then
D EN1^XBRESID.

2.2.2.71 XBRESTL1
Routine to restore first line of routines from a save file.

2.2.2.72 XBRLL
This routine lists a single routine line by line noting the length of the line plus the
cumulative character count.

2.2.2.73 XBRPRTBD
This functionality has been moved to ZIBRPTRD because of the use of non-standard
$Z special variables. The GO is provided for backwards compatibility.

2.2.2.74 XBRPTL
This routine prints the selected routine down to the first line label.

2.2.2.75 XBRSBD
This routine saves selected routines edited after a given date.

2.2.2.76 XBRSELM
Routine selector.

2.2.2.77 XBRSIZ
List routine names and sizes with overall total.

Developers’ Tools
57 September 2005

Standards and Conventions Developers’ Handbook

2.2.2.78 XBRSRCH*
Search data dictionary (DD) for called routines, common check logic, search input
transform for routines, search output transform for routines, search cross references
for routines, and search miscellaneous for routines.

2.2.2.79 XBRXREF*
This routine re-cross references selected cross references(xrefs) for a file. The xrefs
are killed at the highest level and then reset. This is very different from what FileMan
does when you RE-INDEX a field. FileMan does a logical kill and then sets the new
xrefs. The reason for this is multiple fields may set the same xref so one would want
to kill only the ones set by the field being RE-INDEXed. One must re-xref all fields
that set any one of the xrefs being killed and reset, unless the xref is set the same from
multiple fields. This is very hard to explain. Therefore, if you do not understand the
problem, you probably should not be running this routine.

This routine executes an entry point in ^DIK to build the xref logic for all xrefs on the
file. It then deletes the logic for all xrefs not selected, and executes another entry
point in ^DIK to actually xref the file.

TRIGGERS are very complex animals which do not have a xref to kill and may be
conditional and may have no affect.

2.2.2.80 XBSAUD
This routine sets 'audit' on at the file level for selected files.

2.2.2.81 XBSAUTH
This routine sets FileMan dictionary authorities:

 "AUDIT" "DD" "DEL" "LAYGO" "RD" "WR".

2.2.2.82 XBSFGBL
This routine returns a subfile global reference.

NOTE TO PROGRAMMERS: Use entry point EN. Do not use the first line of this
routine, as pending initiatives in MDC might make a formal list on the first line of a
routine invalid. Given a file or subfile number and global reference form, this routine
will return the global reference in the form specified.

F (form) is optional but if passed should equal 1 or 2.
If F is not passed the default form will be 1.

Developers’ Tools
58 September 2005

Standards and Conventions Developers’ Handbook

F = 1 will be in the form ^GLOBAL(DA(2),11,DA(1),11,DA,
F = 2 will be in the form ^GLOBAL(D0,11,D1,11,D2,

Formal list:
1) S = subfile number (call by value)
2) G = global reference (call by reference)

2.2.2.83 XBSITE
Routine to set DUZ(2).

2.2.2.84 XBSUMBLD
This routine requests the user to select a set of routines and generates an integrity
checking routine for the selected routines. The user is asked to enter the name of the
generated routine.

The VA's equivalent routine is XTSUMBLD, which also creates integrity checking
routine(s).

2.2.2.85 XBTM*
This routine, and subsequent routines in the XBTM* namespace, produce a technical
manual from information contained in the package. The manual is approximately 80
pages. All, or individual chapters can be printed.

2.2.2.86 XBUPCASE
Call to convert to uppercase.

2.2.2.87 XBVCH*
Routine(s) to intelligently change variable names.

2.2.2.88 XBVCHV
Use to pull in variables and routines from a %INDEX.

2.2.2.89 XBVIDEO
Set various video attributes. $X is saved and the cursor is returned to it's original
position thru X IOXY (except certain attributes). In addition to the attributes
supported by ENDR^%ZISS, some color attributes are supported, and other
mnemonics are provided for backward compatibility.

Developers’ Tools
59 September 2005

Standards and Conventions Developers’ Handbook

2.2.2.90 XBVK
This is the front end for killing local variables in the namespaced parameter.
Implementation specific routines are called from this routine which is in the ZIBVK*
namespace.

This routine is intended to be called by applications that are done executing in order
to KILL any remaining namespaced local variables. E.g., D EN^XBVK("AG") will
KILL any local variables that exist in the AG namespace.

Notice that if called in background, and the OS is not supported, the routine will quit,
unpleasantly. If your implementation is other than what is supported, and your
vendor has implemented all Type A extensions to the 1990 ANSI M standard, you
can safely remove the two lines that check for OS, and use the existing call to the
MSM-specific routine.

2.2.2.91 XBVL
This is the front end for listing local variables. Implementation specific routines are
called from this routine. Therefore, it has been moved to the ZIBVL* namespace.

2.2.2.92 XBVLINE
This routine asks the user to select a set of routines, asks for the version number,
package, date, and sets the second line of each routine.

The form of the version line will be as follows:

;;n;package name;patch level;date E.G.
;;1.1;PCC DATA ENTRY;**1,2**;Sep 9, 1989

2.2.2.93 XBXTSS
Use for extract and table subscripts.

2.2.2.94 XBPATC
This routine will $Order through the patient and 3rd party globals looking for missing
entries. It will compare IHS/VA Patient files to define unequal DFN’s. It will also
look for a null pointer value in Medicaid global.

2.2.2.95 ZIBCKPKG
This routine checks UCI for package content.

Developers’ Tools
60 September 2005

Standards and Conventions Developers’ Handbook

2.2.2.96 ZIBCLU*
This is a general purpose clean up utility global and driver to get UCI. This routine
will initiate a job running ^%ZIBCLU0 in each UCI and then wait 5 seconds to
elapse before getting the next UCI, skip the UCI this task is in, and then run
^%ZIBCLU0 here. %ZIBCLU0 will remove all dangling ^UTILITY, ^XUTL, ^ZUT
entries. This routine is usually started via TaskMan by scheduling the -ZIBCLU-
option which runs this routine.

DSM ONLY - $ZU(ZIBI) returns <NOUCi> error at end of UCI list
MSM ONLY - $ZU(ZIBI) returns -NULL- value at end of UCI list

2.2.2.97 ZIBER*
MSM error report routines.

2.2.2.98 ZIBFIND
MSM-specific utility for finding blocks which contain a specific GBL.

ZIBCC=common count, ZIBUC=unique count
ZIBCHAR=string of characters

2.2.2.99 ZIBFMD
Routine to display FileMan installation data.

2.2.2.100 ZIBFR
Given a routine name, this routine searches all UCIs and reports the first line of the
selected routine to the user.

2.2.2.101 ZIBGCHAR
This routine contains non-interactive modifications of global characteristics.

Not all capabilities of the implementation-specific global characteristics routines are
reflected in this routine. The argument for each entry point is the unsubscripted name
of the global whose characteristics you want to change with the circumflex present.
If the call is successful, 0 is returned. If the call is not successful, a positive integer is
returned, and the cause can be retrieved at the ERR() entry point.

E.C.'s:

S %=$$NOJOURN^ZIBGCHAR("^AUTTSITE")

I % W !,$$ERR^ZIBGCHAR(%)

Developers’ Tools
61 September 2005

Standards and Conventions Developers’ Handbook

2.2.2.102 ZIBGCHR
Routine to search for control characters in globals.

2.2.2.103 ZIBGD
This routine displays a selected range or subset of the global directory.

2.2.2.104 ZIBGSVED
Routine to save global(s) to tape - DSM specific.

2.2.2.105 ZIBGSVEM
Routine to save global to MSM Unix.

2.2.2.106 ZIBGSVEP
Routine to save global to DOS media.

2.2.2.107 ZIBGTOT
This routine creates a global save in the same format as ^%GTO. The difference is it
uses $ZO which is much faster. Because tests showed no significant difference in
speed between CDT and CAVL4 this routine accepts CDT only. It would be
difficult, although not impossible, to allow partial globals. Therefore, this routine
will save complete globals only. This routine always rewinds the tape before saving
the globals. That means only one file per tape but that one file may use multiple
volumes.

The primary purpose of this routine is to move globals from DSM to MSM.
Therefore, the limitation is use of tape only.

2.2.2.108 ZIBJRNI
This utility is used to initialize all except the active journal areas of a system. The
STU entry point is used by the automatic partition reference for a particular
configuration. This was developed for the PC Network Configuration and has only
been tested using MSM-PC/386.

Developers’ Tools
62 September 2005

Standards and Conventions Developers’ Handbook

2.2.2.109 ZIBNSSV
Use to return non-standard ($Z) special variables, e.g., W $$Z^ZIBNSSV("ERROR")
will write the contents of the error message most recently produced by the OS. These
are the variables supported:

ERROR : Text of error message most recently produced.

LEVEL : Number of the current nesting level.

NAME : Name of routine currently loaded in memory.

ORDER : Data value of the next global node that follows he current global

reference.

TRAP : Line label and routine name of the program that s to receive

control when an error occurs.

VERSION : Name and release of M implementation.

2.2.2.110 ZIBPKGF
Use this routine to obtain an installation status report.

2.2.2.111 ZIBPKGP
Use this routine to process implementation status files.

2.2.2.112 ZIBRD
Use this routine to display a MSM directory of selected routines .

2.2.2.113 ZIBRER*
This routine provides remote error reporting. It $ORDERs through the ERROR
LOG, extracting errors executed since the last run. It then WRITEs the errors to a
file, and SENDs the file to the identified destination(s) according to the parameter
(ENTRY ACTION of option). It removes errors in the ERROR LOG that are more
than 180 days old. This routine is non-interactive. It is designed to run in the
background from TaskMan only.

Entry point OPT is used to set an option into the OPTION file which is scheduled for
every 6 days at 9 PM. The process begins at START.

2.2.2.114 ZIBRERP
ZIB remote error file processing routine. An option will be placed in the OPTION
file for daily processing of files sent to this machine by the Remote Error Reporting
utility beginning the next night at 10:30 PM. The user can change the frequency/time
of scheduling by using the TaskMan option thru the Kernel.

Developers’ Tools
63 September 2005

Standards and Conventions Developers’ Handbook

2.2.2.115 ZIBRNSPC
Use this routine to namespace previously written routines.

2.2.2.116 ZIBRPI*
This utility creates an entry in the OPTION file which is scheduled to run daily in
TaskMan. It searches for files matching the naming conventions for patch files
(specified in the SAC) in the directory indicated by the user. If the package version
currently installed on the system and the patch version match, the routines are
restored from the file, an entry is made in the VERSION multiple of the PACKAGE
file entry, and a report file is sent to the systems indicated by the user. If an action
routine (A9 or B9) is detected during the ZLOAD, and the user has the indicated
permission to run action routines, the action routine is called after all routines have
been restored.

NOTE:
If the user unschedules the option, the

Use the same entry point, OPT^ZIBRPI, to edit any
changes to the parameters.
TaskMan options must be used to reschedule it.

2.2.2.117 ZIBRPRTD
This routine lists routines edited after given date.

2.2.2.118 ZIBRSEL
This is a non-interactive routine select which returns the number of selected routines
set into the indicated variable.

E.g.:

I '$$RSEL^ZIBRSEL("B-BZZZZZZZ","ARRAY(") W "NONE SELECTED" Q

If ro2utines exists in the list or range, their names will be returned as the last

subscript of indicated variable in the 2nd parameter. The default is

^TMP("ZIBRSEL",$J,.

If routine B exists, then node ^TMP("ZIBRSEL",$J,"B") will be null. It is the

programmer's responsibility to ensure the name of the array is correctly formed.

Variables used:
X = String indicating list or range of routines.
Y = String indicating variable into which to set the selected routines.
Default = ^TMP("ZIBRSEL",$J,
F = First routine, if range.
L = Last routine, if range.
N = Number of routines returned.
Q = Quote character.

Developers’ Tools
64 September 2005

Standards and Conventions Developers’ Handbook

2.2.2.119 ZIBRUN
Use to check for active routine in a specific UCI.

2.2.2.120 ZIBSSD
This utility is used as the nightly shutdown routine for MSM PC and is initiated by
the scheduled option AZSJ SHUTDOWN. It was developed for the PC Network
configuration.

2.2.2.121 ZIBTCP
TCP Print Test - This routine must be DONE from the CLOSE EXECUTE when
printing to a TCP printer. See below for further documentation.

H = Host IP address

P = Port number

I = Counter

Technical Notes:
MSM TCP uses the "!" to clear the TCP buffer. FileMan (RPMS) uses "!" for a
carriage return, line feed. Further, TCP does not recognize "?30" as 30 spaces
from left margin. To circumvent these problems, write to a temporary host file,
which formats the document, and then read it back into the TMP global. Once it's
in the TMP global, $O through the global and write each line with a $C(10) and
$C(13) concatenated to the string. This process handles the CR/LF problem at the
remote end.

Port 2501 is the assigned port from the vendor for the Net Que.

As of 3Jan95, this has only been tested on the Unix platform using MSM. It
should work in a DOS environment using FTP Software's TCP, but needs to be
tested.

Below is an inquiry of the Device file and Terminal Type file.

OUTPUT FROM WHAT FILE: DEVICE//
NAME: P-TCP TEST PRINTER $I: 51
ASK DEVICE: YES ASK PARAMETERS: NO
VOLUME SET(CPU): TUC SIGN-ON/SYSTEM
DEVICE: NO
FORCED QUEUING: N0
LOCATION OF TERMINAL: MAT PARKENSON PRINTER
ASK HOST FILE: NO MARGIN WIDTH: 255
FORM FEED: # PAGE LENGTH: 256
BACK SPACE: $C(8) OPEN PARAMETERS:

("XM"_DUZ_$G(ZIBH)_".DAT":"M")

Developers’ Tools
65 September 2005

Standards and Conventions Developers’ Handbook

SUBTYPE: P-TCP PRINTER TYPE: HOST FILE SERVER

Select TERMINAL TYPE NAME: P-TCP PRINTER
NAME: P-TCP PRINTER SELECTABLE AT SIGN-ON: NO
RIGHT MARGIN: 255 FORM FEED: #
PAGE LENGTH: 256 BACK SPACE: $C(8)
OPEN EXECUTE: S XMREC="R X#255:1" CLOSE EXECUTE: D
^ZIBTCP Q
DESCRIPTION: Special Terminal Type used only for P-TCP Printer
Device.

2.2.2.122 ZIBVCHV
Use to read variables and routines from a %Index.

2.2.2.123 ZIBVGE
This routine changes the Volume Group Name in ^SYS(and ^%ZOSF. It is used for
the rapid change of the volume group names in the PC Network Configuration. It has
only been tested using MSM-PC/386.

2.2.2.124 ZIBVKIL
Use to build a namespace variable killer routine in ^.ns.KVAR. Select a %INDEX
host file summary on which to build the routine. Select a namespace for the variables
and the routine to be built. Enter any package-wide variables. Add D ^.ns.VKL0 to
all menu exit actions where package variables are to remain. Add D
KILL^XUSCLEAN to the exit action of all other menus.

2.2.2.125 ZIBVKMSM
This routine kills variables in the namespace of the variable passed in the parameter
and is accessed thru the front end routine XBVK.

2.2.2.126 ZIBVLMSM
This routine lists variables that begin with the string entered by the user. Selection of
variables is case sensitive. This routine is specific to Micronetics. It will work with
any M implementation that has all Type A extensions to the 1990 M ANSI standard
implemented. The front end routine, XBVL, stops if any other than an MSM
implementation is encountered.

Developers’ Tools
66 September 2005

Standards and Conventions Developers’ Handbook

2.2.2.127 ZIBZUCI
Swap UCI between volume sets for MSM-UNIX - Save this routine as %ZUCI in the
MGR UCI.

This utility permits switching between UCIs and Volume Groups when run in
programmer mode. D ^%ZUCI. If switching to a UCI in a Volume Group other than
the System Volume Group (0), enter either the Volume Group Number or Volume
Group Name along with the UCI Number or Name. A 'help' display identifies all
UCIs and Volume Groups that are currently mounted. Use a '?' for 'help'.

A routine may be tied to the UCI,VOL switch. This will be called immediately after
the UCI,VOL switch occurs.

2.2.3 XBGSAVE - Generic Global Save
XBGSAVE is a utility to save globals onto a peripheral medium. XBGSAVE
determines the operating system (OS) in use, and will invoke OS-specific routines to
perform the actual saves. Historically, MSM and DSM routines had been distributed
with XBGSAVE. Other OS-specific routines must be provided by the user or
submitted to the developer for incorporation into XBGSAVE. Current capabilities
are to save MSM globals to cartridge tape, floppy disk, Unix file or 9-track tape, and
to save DSM globals to cartridge tape or 9-track tape.

2.2.4 XBGSAVE Routine
XBGSAVE is a parameter-driven routine that: (1) verifies that the global to be saved
exists, (2) verifies parameters, (3) determines the operating system under which it is
running, then calls the appropriate OS-specific routine to process the global.

2.2.5 ZIBGSV* Routines
These OS-specific routines saves the global entries to the output device specified.

2.2.6 Technical Notes

MSM Write Protect
The MSM operating system cannot test for write protection on tape, therefore, write
enable the tape before processing.

Developers’ Tools
67 September 2005

Standards and Conventions Developers’ Handbook

Kernel Environment Assumed
XBGSAVE assumes it’s running under the KERNEL with appropriate variables set.
If called from other than the Kernel environment, the user must ensure a defined
environment prior to calling XBGSAVE.

File Name
A global saved to the Unix file will be named AAAAFFFFFF.JJJ.

“AAAA” is the global namespace.

“FFFFFF” is the six digit numeric facility code.

“JJJ” is the Julian date.

Device numbers
DSM - 47 for cartridge; 48 for 9-track

MSM - 51 - 54 for all devices

The tape format for MSM is in the %GS format.

2.2.7 Programmer Notes

Input:
In addition to the global to be saved, other parameters may be used to customize
XBGSAVE. Only the global name parameter, XBGL, is required. For non-
KERNEL applications, also specify DT for date, DUZ(2) for location and
%ZOSF(“OS”) for operating system type.

Process:
1. Verify global to be saved exists.
2. Verify parameters.
3. Call OS-specific ZIBGS* routine.

Output:
Local variable XBFLG will contain the result of the call to XBGSAVE. If the
save was successful, XBFLG will be 0 (zero). If the save was unsuccessful, local
variable XBFLG(1) will have a narrative that can be displayed to the user
indicating the cause of failure.

2.2.8 XBGSAVE Input Parameters
Name Description/ Default/ Format/ Use
XBDT Date of Global save.

Default: NOW.

Format: Enter date in FileMan format, leading zeros not required.

Ex.: S XBDT=7991231

Developers’ Tools
68 September 2005

Standards and Conventions 	 Developers’ Handbook

Name Description/ Default/ Format/ Use
Use: Header dump comment.

XBE 	 Ending first-level numeric subscript
Default: End of file.
Format: Canonic number.

XBF 	 Beginning first-level numeric subscript, seed for $ORDER.
Default: beginning of file.
Format: Canonic number.

XBFLT 	 S= 1, saves as flat file.
Default: Save as a subscripted global.
Format: 1 or none. Ex.: S XBFLT=1
Use: If 1, just the data will be saved, in flat file format.

XBFN 	 Output file name.
Default: "<ns><asufac>.<Julian date>"

XBGL 	 Global name to be saved.
Default: None. This is required.
Format: Global name with no “^”. Ex.: S XBGL=”ATAGLOB”.

XBIO 	 IO device parameter.
Default: 51 - HFS for MSM and 47 - cartridge for DSM.
Format: one to three digit number specifying device.

XBMED 	 Media used for output to global save.
Default: If not defined, the user is asked to select the media.
Format: “C” for cartridge tape
“D” for diskette
“F” for Unix file
“T” for 9-track tape

XBNAR 	 Narrative for Operator display if help needed.
Default: None.
Format: Free text Ex.: S XBNAR=”APC Service Unit”.
Use: Customizing HELP display. “This option saves the
“_XBNAR_” “_XBGL_” transaction file to tape
or diskette...”.

XBPAR 	 DSM IO parameter.
Default: open parameter from DEVICE file for specified device.
Format: “V” or undefined
Use: for DSM operating systems only, ignored by a MSM routine.

XBQ 	 Y/N, to place file in uucp q.
Default: "Y"
Format: “Y” or “N”. Ex.: S XBQ=”N”
Use: If “Y”, will place file in uucp q to send to Area Office.

XBQTO 	'sendto' destination.
Default: Area Office sysid in RPMS SITE file

XBTLE 	 Global dump comment.
Default: DUZ(2) location name.
Format: free text. Ex.: S XBTLE=”APC’s October trans”
Use: Header dump comment for off-line media. XBTLE will be

Developers’ Tools
69 	September 2005

Standards and Conventions Developers’ Handbook

Name Description/ Default/ Format/ Use
appended with DUZ(2) name for header dump comment.

XBUF Full Path name for file (MSM only).
Default: /user/spool/uucppublic for UNIX, C:\EXPORT for DOS.

2.2.9 Sample Set-up of Routine Call

To save a global to an operator-specified output device:
S XBGL=”gloname”,XBTLE=”T&A for FY87" D ^XBGSAVE

To save a global to a MSM cartridge:
S XBGL=”gloname”,XBMED=”C” D ^XBGSAVE

To save a global to a DSM cartridge:
S XBGL=”gloname”,XBMED=”C” D ^XBGSAVE

2.2.10 Error Codes
Various types of errors are produced:

Parameter errors

Operator cancellation errors

I/O errors

Tape test errors

If errors are detected, XBFLG is set to “-1", the error narrative is stored in XBFLG(1)
and XBGSAVE returns to the calling program WITHOUT SAVING THE FILE.

If no errors are detected, XBFLG is set to “0".

Below are some of the possible error messages returned:

"Abort at drive select"

"Device Not Available During Tape Testing"

"Facility Number 'DUZ(2)' is not defined"

"Job Aborted by Operator during Tape Test"

"Job Aborted by Operator During Floppy Mount"

"Job Terminated by Operator at Device Select"

"Job Terminated By Operator at Mount Message"

"Job Aborted by Operator During Tape Mount"

"Job Aborted by Operator During Tape Test"

"Job Aborted, Tape not Ready"

"Job Aborted by Operator During Floppy Mount"

"Media Type '"_XBMED_"' is incorrect"

Developers’ Tools
70 September 2005

Standards and Conventions Developers’ Handbook

"Operating system is not 'MSM' or 'DSM'"

"Queue of File to uucp Failed"

"Tape not rewound"

"Tape Test Failed During Testing"

"The variable 'XBGL' must contain the name of the global you wish to save."

"The ^%ZOSF(""OS"") node does not exist"

"Transaction File does not exist"

XBERRMSG_" Not Available"

XBFLG(1)," After 6 Minutes"

XBMSG_" Drive Not Available"

2.3 Approved IHS APIs

2.3.1 Demographic Data

2.3.1.1 Routine - AUPNPAT
Data for the following function calls come from the PATIENT file, file 9000001, and
from the Medicare Eligible, Medicaid Eligible, and Private Insurance Eligible files.

SEX(p) Returns SEX of patient p
arguments

p - patient ien (DFN)
examples

W $$SEX^AUPNPAT(234) => F

DOB(p,f) Returns DATE OF BIRTH of patient p in format f
arguments

p - patient ien (DFN)
f - optional format; if null, returns internal fileman format of DOB
 E - external written-out format (MAR 05, 1995)

examples
W $$DOB^AUPNPAT(1234) => 2950305
W $$DOB^AUPNPAT(1234,“E”) => MAR 05,1995

SSN(p) Returns SSN of patient
arguments

p - patient ien (DFN)
examples

W $$SSN^AUPNPAT(234) => 123456789

AGE(p,d,f) Returns AGE of patient p on date d in format f
arguments

p - patient ien (DFN)

Developers’ Tools
71 September 2005

Standards and Conventions Developers’ Handbook

d - optional date in internal fileman format; if null, will default to DT
f - optional format; if null, returns age in years

null - age in years
 R - age in readable format

examples
W $$AGE^AUPNPAT(1234) => 32
W $$AGE^AUPNPAT(1234,“R”) => 32 YRS

DOD(p,f) Returns DATE OF DEATH of patient p in format f
arguments

p - patient ien (DFN)
f - optional format; if null, returns internal fileman format of DOD
 E - external written-out format (MAR 05, 1995)

examples
W $$DOD^AUPNPAT(1234) => 2950305
W $$DOD^AUPNPAT(1234,“E”) => MAR 05,1995

TRIBE(p,f) Returns TRIBE OF MEMBERSHIP of patient p in format f
arguments

p - patient ien (DFN)
f - optional format; if null, returns tribe code
 I - internal format of tribe (tribe ien)
 E - external written-out format of tribe

C - tribe code
examples

W $$TRIBE^AUPNPAT(1234,“I”) => 31
W $$TRIBE^AUPNPAT(1234,“E”) => CHOCTAW NATION OF OK
W $$TRIBE^AUPNPAT(1234,“C”) => 031

COMMRES(p,f) Returns COMMUNITY OF RESIDENCE of patient p in
format f

arguments
p - patient ien (DFN)
f - optional format; if null, returns STCTYCOM COMMUNITY code
 I - internal format of COMMUNITY (community ien)
 E - external written-out format of COMMUNITY

C - STCTYCOM code
examples

W $$COMMRES^AUPNPAT(1234,“I”) => 31
W $$COMMRES^AUPNPAT(1234,“E”) => PRINCESS BAY
W $$COMMRES^AUPNPAT(1234,“C”) => 0210019

HRN(p,l,f) Returns HEALTH RECORD NUMBER of patient p at location l
in format f

arguments
p - patient ien (DFN)

Developers’ Tools
72 September 2005

Standards and Conventions Developers’ Handbook

l - must be valid ien of location
f - optional, 2–HRN will have prefix of site abbreviation

examples
W $$HRN^AUPNPAT(1234,4585) => 3456
W $$HRN^AUPNPAT(1234,4585,2) => SE3456

ELIGSTAT(p,f) Returns ELIGIBILITY STATUS of patient p in format f
arguments

p - patient ien (DFN)
f - optional format; if null, returns internal format
 I - internal format of eligibility status (set of codes)
 E - external written-out format of eligibility status

examples
W $$ELIGSTAT^AUPNPAT(1234,“I”) => D
W $$ELIGSTAT^AUPNPAT(1234,“E”) => DIRECT ONLY

BEN(p,f) Returns CLASSIFICATION/BENEFICIARY of patient p in format f
arguments

p - patient ien (DFN)
f - optional format; if null, returns classification/beneficiary code
 I - internal format of classification/beneficiary (pointer value)
 E - external written-out format of classification/beneficiary

C - classification/beneficiary code
examples

W $$BEN^AUPNPAT(1234,“I”) => 1
W $$BEN^AUPNPAT(1234,“E”) => INDIAN/ALASKA NATIVE
W $$BEN^AUPNPAT(1234,“C”) => 01

MCR(p,d) Returns 1 or 0: Is Patient p eligible for Medicare on date d?
arguments

p - patient ien (DFN)

d - required date in internal fileman format

examples
W $$MCR^AUPNPAT(1234,2950601) => 1
Is patient 1234 eligible for Medicare on 6/1/95? => yes

PI(p,d) Returns 1 or 0: Is Patient p eligible for private insurance on date d?
arguments

p - patient ien (DFN)

d - required date in internal fileman format

examples
W $$PI^AUPNPAT(1234,2950601) => 1
Is patient 1234 eligible for private insurance on 6/1/95? => yes

MCD(p,d) Returns 1 or 0: Is Patient p eligible for Medicaid on date d?
arguments

p-patient ien (DFN)

Developers’ Tools
73 September 2005

Standards and Conventions Developers’ Handbook

d-required date in internal fileman format
examples

W $$MCD^AUPNPAT (1234,2950601) =>1
Is patient 1234 eligible for Medicaid on 6/1/95? =>yes

MCDPN(p,d,f) Returns Medicaid plan name for patient p on date d in format
f

arguments
p - patient ien (DFN)

d - required date in internal fileman format

f - format, optional; if null, returns internal ien of insurer I

examples
W $$MCDPN^AUPNPAT(1234,2950601,“I”) => 1
W $$MCDPN^AUPNPAT(1234,2950601,“E”) => CARONDELET

PIN(p,d,f) Returns private insurance plan name for patient p on date d in format
f

arguments
p - patient ien (DFN)

d - required date in internal fileman format

f - format, optional; if null, returns internal ien of insurer

examples
W $$PIN^AUPNPAT(1234,2950601,“I”) => 1
W $$PIN^AUPNPAT(1234,2950601,“E”) => BLUE CROSS/BLUE SHIELD

CDEATH(p,f) Returns CAUSE OF DEATH of patient p in format f
arguments

p - patient ien (DFN)
f - optional format; if null, returns Cause of Death ICD9 code

 I - internal format ICD9 ien

 E - external written-out format (ICD9 TEXT)

C - ICD9 code

examples

W $$CDEATH^AUPNPAT(1234,“I”) => 31
W $$CDEATH^AUPNPAT(1234,“E”) => DIABETES MELLITUS
W $$CDEATH^AUPNPAT(1234,“C”) => 250.00

ENC(p) Returns an encrypted patient identifier 12 bytes long. The entry-
point DEC reverses the process and returns the decoded output in a 27-byte-long
string.

arguments
p - patient ien (DFN)

examples
W $$ENC^AUPNPAT(1) => V46332UMH763

Developers’ Tools
74 September 2005

Standards and Conventions Developers’ Handbook

DEC(p) Reverses the process of ENC^AUPNPAT and returns the decoded
output in a 27-byte-long string.

arguments
p - patient ien (DFN)

examples
W $$DEC^AUPNPAT(V46332UMH763) =>[THA,B__JAN 01,1933_0001]

2.3.1.2 Routine - AUPNPAT1
Data for the following functions comes from the PATIENT file, file 9000001.

BEN(p) Returns Beneficiary/Non-Beneficiary Status
arguments

p - patient ien (DFN)
examples

W $$BEN^AUPNPAT1(1) =>1
OUTPUT:

1 = yes
0 = no
-1 = no/old tribe or unable

2.3.1.3 Generic VA PIMS APIs
The VA uses calls to VADPT to pull various patient data items. The following was
borrowed from the VA Technical Manual.

2.3.1.3.1 INP^VADPT
This entry point will return data related to an inpatient episode.

Input Variables:
DFN Internal entry number in the patient file; Required

VAHOW This optional variable can be set to a requested format for the output
array. If this variable is not defined or does not contain one of the following
values, the output array will be returned with numeric subscripts.

1 -- return the output array with alpha subscripts - see details at end of
this API

(e.g., VADM(1) would be VADM(“NM”))
2 -- return the output in the ^UTILITY global with numeric subscripts

(e.g., ^UTILITY(“VADM”,$J,1))
12 -- return the output in the ^UTILITY global with alpha subscripts

(e.g., ^UTILITY(“VADM”,$J,”NM”))

VAROOT This optional variable can be set to a local variable or global name in
which to return the output.(e.g., VAROOT=”DGDEM”)

Developers’ Tools
75 September 2005

Standards and Conventions Developers’ Handbook

VAINDT This optional variable may be set to a past date/time for which the
programmer wishes to know the patient’s inpatient status. This must be passed as
an internal VA FileMan date/time format. If time is not passed, it will assume
anytime during that day. If this variable is not defined, it will assume NOW as
the date/time.

Output Variables:
VAIN(1) The INTERNAL NUMBER of the admission if one was found for the
date/time requested. If no inpatient episode was found for the date/time passed,
then all variables in the VAIN array will be returned as null. (e.g., 123044)

VAIN(2) The PRIMARY CARE PHYSICIAN [PROVIDER] assigned to the
patient at the date/time requested in internal^external format. (e.g.,
3^SMITH,JOSEPH L.)

VAIN(3) The TREATING SPECIALTY assigned to the patient at the date/time
requested in internal^external format. (e.g., 19^GERIATRICS)

VAIN(4) The WARD LOCATION to which the patient was assigned at the
date/time requested in internal^external format. (e.g., 27^IBSICU)

VAIN(5) The ROOM-BED to which the patient was assigned at the date/time
requested in external format. (e.g., 123-B)

VAIN(6) This will return a “1” in the first piece if the patient is in a bed status;
otherwise, a “0” will be returned. A non-bed status is made based on the last
transfer type to a non-bed status, (i.e., authorized absence, unauthorized absence,
etc.) The second piece will contain the name of the last transfer type should one
exist. (e.g., 1^FROM AUTHORIZED ABSENCE)

VAIN(7) The ADMISSION DATE/TIME for the patient in internal^external
format. (e.g., 2870213.0915^FEB 13,1987@09:15)

VAIN(8) The ADMISSION TYPE for the patient in internal^external format.
(e.g., 3^DIRECT)

VAIN(9) The ADMITTING DIAGNOSIS for the patient. (e.g., PSYCHOSIS)

VAIN(10) The internal entry number of the PTF record corresponding to this
admission. (e.g., 2032)

VAIN(11) The ATTENDING PHYSICIAN in internal^external format. (e.g.,
25^SMITH,JOHN)

VAERR The error flag will have one of the following values.
0 -- no errors encountered
1 -- error encountered - DFN or ^DPT(DFN,0) is not defined

Developers’ Tools
76 September 2005

Standards and Conventions Developers’ Handbook

INP^VADPT VAIN(1) VAIN(“AN”)
VAIN(2) VAIN(“DR”)
VAIN(3) VAIN(“TS”)
VAIN(4) VAIN(“WL”)
VAIN(5) VAIN(“RB”)
VAIN(6) VAIN(“BS”)
VAIN(7) VAIN(“AD”)
VAIN(8) VAIN(“AT”)
VAIN(9) VAIN(“AF”)
VAIN(10) VAIN(“PT”)
VAIN(11) VAIN(“AP”)

2.3.1.3.2 IN5^VADPT
This entry point will return data related to an inpatient episode.

Input Variables:
DFN See INP^VADPT for details.

VAHOW See INP^VADPT for details.

VAROOT See INP^VADPT for details.

VAIP(“D”) This optional variable can be defined as follows:

VAIP(“D”) =VA FileMan date in internal format. If the patient was an
inpatient at the date/time passed, movement data pertaining to that date/time
will be returned.

VAIP(“D”) =”LAST” Movement data pertaining to the last movement on
file, regardless if patient is a current inpatient.

VAIP(“D”) =valid date without time Will return movement data if patient
was an inpatient at any time during the day on the date that was passed in.

VAIP(“D”) If not passed, will return movement data if the patient is
inpatient now.

VAIP(“L”) This optional variable, when passed, will include lodgers
movements in the data.

VAIP(“V”) Can be defined as the variable used instead of VAIP(.(e.g.,
VAIP(“V”)=”SD”)

Developers’ Tools
77 September 2005

Standards and Conventions Developers’ Handbook

VAIP(“E”) This optional variable is defined as the internal file number of a
specific movement. If this is defined, VAIP(“D”) is ignored.(e.g.,
VAIP(“E”)=123445)

VAIP(“M”) This optional variable can be passed as a “1” or a “0” (or null).

VAIP(“M”)”:

0 - The array returned will be based on the admission movement
associated with the movement date/time passed.

1 - The array returned will be based on the last movement associated
with the date/time passed.

Output Variables:
VAIP(1) The INTERNAL FILE NUMBER [IFN] of the movement found for
the specified date/time. (e.g., 231009)

VAIP(2) The TRANSACTION TYPE of the movement in internal^external
format where:

 1=admission
2=transfer
3=discharge

 4=check-in lodger
 5=check-out lodger

6=specialty transfer (e.g., 3^DISCHARGE)

VAIP(3) The MOVEMENT DATE/TIME in internal^external date format.
(e.g., 2880305.09^MAR 5,1988@09:00)

VAIP(4) The TYPE OF MOVEMENT in internal^external format. (e.g.,
4^INTERWARD TRANSFER)

VAIP(5) The WARD LOCATION to which patient was assigned with that
movement in internal^external format. (e.g., 32^1B-SURG)

VAIP(6) The ROOM-BED to which the patient was assigned with that
movement in internal^external format. (e.g., 88^201-01)

VAIP(7) The PRIMARY CARE PHYSICIAN assigned to the patient in
internal^external format. (e.g., 3^SMITH,JACOB J.)

VAIP(8) The TREATING SPECIALTY assigned with that movement in
internal^external format. (e.g., 98^OPTOMETRY)

Developers’ Tools
78 September 2005

Standards and Conventions Developers’ Handbook

VAIP(9) The DIAGNOSIS assigned with that movement. (e.g., UPPER GI
BLEEDING)

VAIP(10) This will return a “1” in the first piece if the patient is in a bed status;
otherwise, a “0” will be returned. A non-bed status is made based on the last
transfer type, if one exists, and a transfer to a non-bed status, (i.e., authorized
absence, unauthorized absence, etc.) The second piece will contain the name of
the last transfer type should one exist. (e.g., 1^FROM AUTHORIZED
ABSENCE)

VAIP(11) If patient is in an absence status on the movement date/time, this will
return the EXPECTED RETURN DATE from absence in internal^external
format. (e.g., 2880911^SEP 11,1988)

VAIP(12) The internal entry number of the PTF record corresponding to this
admission. (e.g., 2032)

VAIP(13) The INTERNAL FILE NUMBER of the admission associated with
this movement. (e.g., 200312)

VAIP(13,1) The MOVEMENT DATE/TIME in internal^external format. (e.g.,
2881116.08^NOV 16,1988@08:00)

VAIP(13,2) The TRANSACTION TYPE in internal^external format. (e.g.,
1^ADMISSION)

VAIP(13,3) The MOVEMENT TYPE in internal^external format. (e.g.,
15^DIRECT)

VAIP(13,4) The WARD LOCATION associated with this patient with this
movement in internal^external format. (e.g., 5^7BSCI)

VAIP(13,5) The PRIMARY CARE PHYSICIAN assigned to the patient for
this move-ment in internal^external format. (e.g., 16^JONES, CHARLES C)

VAIP(13,6) The TREATING SPECIALTY for the patient for this movement in
internal^external format. (e.g., 3^NEUROLOGY)

VAIP(14) The INTERNAL FILE NUMBER of the last movement associated
with this movement. (e.g., 187612)

VAIP(14,1) The MOVEMENT DATE/TIME in internal^external format. (e.g.,
2881116.08^NOV 16,1988@08:00)

VAIP(14,2) The TRANSACTION TYPE in internal^external format. (e.g.,
2^TRANSFER)

Developers’ Tools
79 September 2005

Standards and Conventions Developers’ Handbook

VAIP(14,3) The MOVEMENT TYPE in internal^ external format. (e.g.,
4^INTERWARD TRANSFER)

VAIP(14,4) The WARD LOCATION associated with this patient with this
movement in internal^external format. (e.g., 5^7BSCI)

VAIP(14,5) The PRIMARY CARE PHYSICIAN assigned to the patient for
this movement in internal^external format. (e.g., 16^JONES, CHARLES C)

VAIP(14,6) The TREATING SPECIALTY for the patient for this movement
in internal^external format. (e.g., 3^NEUROLOGY)

VAIP(15) The INTERNAL FILE NUMBER of the movement which occurred
immediately prior to this one, if one exists. (e.g., 153201)

VAIP(15,1) The MOVEMENT DATE/TIME in internal^external format. (e.g.,
2881116.08^NOV 16,1988@08:00)

VAIP(15,2) The TRANSACTION TYPE in internal^external format. (e.g.,
2^TRANSFER)

VAIP(15,3) The MOVEMENT TYPE in internal^ external format. (e.g.,
4^INTERWARD TRANSFER)

VAIP(15,4) The WARD LOCATION associated with this patient with this
movement in internal^external format. (e.g., 5^7BSCI)

VAIP(15,5) The PRIMARY CARE PHYSICIAN assigned to the patient for
this movement in internal^external format. (e.g., 16^JONES, CHARLES C)

VAIP(15,6) The TREATING SPECIALTY for the patient for this movement in
internal^external format. (e.g., 3^NEUROLOGY)

VAIP(16) The INTERNAL FILE NUMBER of the movement which occurred
immediately following this one, if one exists. (e.g., 146609)

VAIP(16,1) The MOVEMENT DATE/TIME in internal^external format. (e.g.,
2881116.08^NOV 16,1988@08:00)

VAIP(16,2) The TRANSACTION TYPE in internal^external format. (e.g.,
2^TRANSFER)

VAIP(16,3) The MOVEMENT TYPE in internal^ external format. (e.g.,
4^INTERWARD TRANSFER)

VAIP(16,4) The WARD LOCATION associated with this patient with this
movement in internal^external format. (e.g., 5^7BSCI)

Developers’ Tools
80 September 2005

Standards and Conventions Developers’ Handbook

VAIP(16,5) The PRIMARY CARE PHYSICIAN assigned to the patient for
this movement in internal^external format. (e.g., 16^JONES, CHARLES C)

VAIP(16,6) The TREATING SPECIALTY for the patient for this movement in
internal^external format. (e.g., 3^NEUROLOGY)

VAIP(17) The INTERNAL FILE NUMBER of the discharge associated with this
movement. (e.g., 1902212)

VAIP(17,1) The MOVEMENT DATE/TIME in internal^external format. (e.g.,
2881116.08^NOV 16,1988@08:00)

VAIP(17,2) The TRANSACTION TYPE in internal^external format.(e.g.,
3^DISCHARGE)

VAIP(17,3) The MOVEMENT TYPE in internal^external format. (e.g.,
16^REGULAR)

VAIP(17,4) The WARD LOCATION associated with this patient for this
movement in internal^external format. (e.g., 5^7BSCI)

VAIP(17,5) The PRIMARY CARE PHYSICIAN assigned to the patient for
this movement in internal^external format. (e.g., 16^JONES, CHARLES C)

VAIP(17,6) The TREATING SPECIALTY for the patient for this movement in
internal^external format. (e.g., 3^NEUROLOGY)

VAIP(18) The ATTENDING PHYSICIAN assigned to the patient for this
movement in internal^external format. (e.g., 25^SMITH,JOHN)

VAERR The error flag will have one of the following values.

0 -- no errors encountered
1 -- error encountered - DFN or ^DPT(DFN,0) is not defined

VASD(“C”,Clinic IFN) Can be set up to contain only those internal file entries
from the Hospital Location file for clinics which you would like to see
appointments for this particular patient. You may define this array with just one
clinic or with many. If you do not define this variable, it will be assumed that you
want appointments for this patient in all clinics returned.

IN5^VADPT VAIP(1) VAIP(“MN”)
VAIP(2) VAIP(“TT”)
VAIP(3) VAIP(“MD”)
VAIP(4) VAIP(“MT”)
VAIP(5) VAIP(“WL”)

Developers’ Tools
81 September 2005

Standards and Conventions Developers’ Handbook

VAIP(6) VAIP(“RB”)
VAIP(7) VAIP(“DR”)
VAIP(8) VAIP(“TS”)
VAIP(9) VAIP(“MF”)
VAIP(10) VAIP(“BS”)
VAIP(11) VAIP(“RD”)
VAIP(12) VAIP(“PT”)
VAIP(13) VAIP(“AN”)
VAIP(13,#) VAIP(“AN”,#)
VAIP(14) VAIP(“LN”)
VAIP(14,#) VAIP(“LN”,#)
VAIP(15) VAIP(“PN”)
VAIP(15,#) VAIP(“PT”,#)
VAIP(16) VAIP(“NN”)
VAIP(16,#) VAIP(“NN”,#)
VAIP(17) VAIP(“DN”)
VAIP(17,#) VAIP(“DN”,#”)
VAIP(18) VAIP(“AP”)

2.3.1.3.3 ADM^VADPT2
This returns the internal file number of the admission movement. If VAINDT is not
defined, this will use “NOW” for the date/time.

Input Variables:
DFN This required variable is the internal entry number in the patient file

VAINDT This optional variable may be set to a past date/time for which the
programmer wishes to know the patient’s inpatient status. This must be passed as
an internal VA FileMan date/time format. (e.g., 2880101.08)

Output Variables:
VADMVT Returns the internal file number of the admission movement.

VAERR The error flag will have one of the following values.

0 -- no errors encountered
1 -- error encountered - DFN or ^DPT(DFN,0) is not defined

2.3.1.3.4 KVAR^VADPT
This call is used to remove all variables defined by the VADPT routine. The
programmer should elect to utilize this call to remove the arrays which were
returned by VADPT.

Developers’ Tools
82 September 2005

Standards and Conventions Developers’ Handbook

2.3.1.3.5 KVA^VADPT
This call is used as above and will also kill the VA(“BID”) and VA(“PID”)
variables.

2.3.2 PCC Data
Function Calls Used to Retrieve Data Items from PCC/Patient Files

This section describes the many function calls available to developers for retrieving
data from PCC or the Patient file. The PCC files include the Visit file and all “V”
files. If you know the visit IEN, you may use any of these calls to retrieve a particular
PCC data item. To retrieve patient demographic information, you only need to know
the patient DFN. This document describes published entry points from both the
AUPN - IHS DICTIONARIES (PATIENT) package and from the APCL - PCC
MANAGEMENT REPORTS package.

2.3.2.1 Visit File Functions

2.3.2.1.1 Routine - APCLV
For each of the function calls in APCLV, the user is required to pass the visit ien
as the first parameter. Data for the following functions come from the VISIT file,
file 9000010.

VD(v,f) Returns VISIT DATE for visit v in format f
arguments

v - visit ien
f - optional format; if null, returns internal FileMan format of visit date
 I - internal FileMan format
 E - external written-out format (MAR 05, 1995)
 S - slash format (03/05/95)

examples
W $$VD^APCLV(1234,“I”) => 2950305
W $$VD^APCLV(1234,“E”) => MAR 05,1995
W $$VD^APCLV(1234,“S”) => 03/05/95

VDTM(v,f) Returns VISIT DATE AND TIME for visit v in format f.
arguments

v - visit ien
f - optional format; if null, returns internal FileMan format of visit date
 I - internal FileMan format
 S - slash format (03/05/95)
 E - external written-out format (MAR 05, 1995)

examples

Developers’ Tools
83 September 2005

Standards and Conventions Developers’ Handbook

W $$VDTM^APCLV(1234,“I”)

W $$VDTM^APCLV(1234,“E”)

W $$VDTM^APCLV(1234,“S”)

=> 2950305.1300
=> MAR 05,1995 1:00pm

=> 03/05/95 1:00pm

TIME(v,f) Returns TIME of visit v in format f
arguments

v - visit ien
f - optional format; if null, returns internal FileMan format of visit time
 I - internal FileMan format
 P - am/pm
 E - external format

examples
W $$TIME^APCLV(1234, “I”) => 1300

W $$TIME^APCLV(1234, “P”) => 1:00pm

W $$TIME^APCLV(1234, “E”) => 1:00

DOW(v,f) Returns DAY OF WEEK for visit v in format f
arguments

v - visit ien
f - optional format; if null, returns internal FileMan format of visit date
 I - internal number of day 0-6 for Sunday to Saturday
 E - external written-out format

examples
W $$DOW^APCLV(1234,“I”) => 1

W $$DOW^APCLV(1234,“E”) => Monday

TYPE(v,f) Returns TYPE OF VISIT for visit v in format f
arguments

v - visit ien
f - optional format; if null, returns internal FileMan format of type of visit
 I - internal FileMan format
 E - external format

examples
W $$TYPE^APCLV(1234,“I”) => I

W $$TYPE^APCLV(1234,“E”) => IHS

PATIENT(v,f) Returns PATIENT for visit v in format f
arguments

v - visit ien
f - optional format; if null, returns internal FileMan format of PATIENT
entry (DFN)

I - internal FileMan format

 E - external format

 C - chart number (asufac_chart number)

examples
W $$PATIENT^APCLV(1234,“I”) => 34

Developers’ Tools
84 September 2005

Standards and Conventions Developers’ Handbook

W $$PATIENT^APCLV(1234,“E”) => JONES,LORI
W $$PATIENT^APCLV(1234,“C”) => 000101000987

COMM(v,f) Returns COMMUNITY OF RESIDENCE of the patient for visit v
in format f

arguments
v - visit ien
f - optional format; if null, returns internal FileMan format of community
 I - internal FileMan format
 E - external format

C - STCTYCOM code
examples

W $$COMM^APCLV(1234,“I”) => 1234

W $$COMM^APCLV(1234,“E”) => TUCSON

W $$COMM^APCLV(1234,“C”) => 04023876

CHART(v) Returns ASUFAC_HRN of patient for visit v
arguments

v - visit ien
will return ASUFAC_HRN for the HRN at the location of the visit. If no
chart exists at that location, the ASUFAC_HRN will be for DUZ(2).
Otherwise, a blank will be returned. The HRN is left zero filled to 6 digits.

examples
W $$CHART^APCLV(1234) =>000101003457

LOCENC(v,f) Returns LOCATION OF ENCOUNTER for visit v in format f
arguments

v - visit ien
f - optional format; if null, returns internal FileMan format of location
entry (ien)

I - internal FileMan format

 E - external format

C - IHS ASUFAC

examples

W $$LOCENC^APCLV(1234,“I”) => 4585
W $$LOCENC^APCLV(1234,“E”) => SELLS HOSPITAL
W $$LOCENC^APCLV(1234,“C”) => 000101

SC(v,f) Returns SERVICE CATEGORY for visit v in format f
arguments

v - visit ien
f - optional format; if null, returns internal FileMan format of service
category
 I - internal FileMan format

 E - external format

examples

Developers’ Tools
85 September 2005

Standards and Conventions Developers’ Handbook

W $$SC^APCLV(1234,“I”) => A
W $$SC^APCLV(1234,“E”) => AMBULATORY

CLINIC(v,f) Returns CLINIC for visit v in format f
arguments

v - visit ien
f - optional format; if null, returns internal FileMan format of clinic entry
(ien)

I - internal FileMan format
 E - external format

C - IHS Clinic Code
examples

W $$CLINIC^APCLV(1234,“I”) => 1
W $$CLINIC^APCLV(1234,“E”) => GENERAL
W $$CLINIC^APCLV(1234,“C”) => 01

DLM(v,f) Returns DATE LAST MODIFIED for visit v in format f
arguments

v - visit ien
f - optional format; if null, returns internal FileMan format of visit date
 I - internal FileMan format
 E - external written-out format (MAR 05, 1995)
 S - slash format (03/05/95)

examples
W $$DLM^APCLV(1234,“I”) => 2950305
W $$DLM^APCLV(1234,“E”) => MAR 05,1995
W $$DLM^APCLV(1234,“S”) => 03/05/95

DVEX(v,f) Returns DATE VISIT EXPORTED for visit v in format f
arguments

v - visit ien
f - optional format; if null, returns internal FileMan format of visit date
 I - internal FileMan format
 E - external written-out format (MAR 05, 1995)
 S - slash format (03/05/95)

examples
W $$DVEX^APCLV(1234,“I”) => 2950305
W $$DVEX^APCLV(1234,“E”) => MAR 05,1995
W $$DVEX^APCLV(1234,“S”) => 03/05/95

APWI(v,f) Returns APPT/WALK IN code from visit file for visit v in format f
arguments

v - visit ien
f - optional format; if null, returns internal FileMan format of visit date
I - internal FileMan format
E - external written-out format (APPOINTMENT)

Developers’ Tools
86 September 2005

Standards and Conventions Developers’ Handbook

examples
W $$APWI^APCLV(1234,“I”) => A
W $$APWI^APCLV(1234,“E”) => APPOINTMENT

EM(v,f) Returns EVALUATION AND MANAGEMENT CPT for visit v in
format f

arguments
v - visit ien
f - optional format; if null, returns internal FileMan format of CPT CODE
(ien)

I - internal FileMan format
E - external format, description of code
C - CPT Code

examples
W $$EM^APCLV(1234,“I”) => 99211
W $$EM^APCLV(1234,“E”) => OFFICE VISIT, EXTENDED
W $$EM^APCLV(1234,“C”) => 99211

CODT(v,f) Returns CHECK OUT DATE AND TIME for visit v in format f
arguments

v - visit ien
f - optional format; if null, returns internal FileMan format of visit date
 I - internal FileMan format
 E - external written-out format (MAR 05, 1995)
 S - slash format (03/05/95)

examples
W $$CODT^APCLV(1234,“I”) => 2950305
W $$CODT^APCLV(1234,“E”) => MAR 05,1995
W $$CODT^APCLV(1234,“S”) => 03/05/95

LS(v,f) Returns LEVEL OF SERVICE for visit v in format f
arguments

v - visit ien
f - optional format; if null, returns internal FileMan format of type of visit
 I - internal FileMan format
 E - external format

examples
W $$LS^APCLV(1234,“I”) => B

W $$LS^APCLV(1234,“E”) => BRIEF

APDT(v,f) Returns APPT DATE AND TIME from visit file for visit v in format f
arguments

v - visit ien
f - optional format; if null, returns internal FileMan format of visit date
 I - internal FileMan format
 E - external written-out format (MAR 05, 1995)

Developers’ Tools
87 September 2005

Standards and Conventions Developers’ Handbook

 S - slash format (03/05/95)
examples

W $$APDT^APCLV(1234,“I”) => 2950305
W $$APDT^APCLV(1234,“E”) => MAR 05,1995
W $$APDT^APCLV(1234,“S”) => 03/05/95

OUTSL(v) Returns OUTSIDE LOCATION from visit file for visit v.
arguments

v - visit ien
examples

W $$OUTSL^APCLV(1234) => WALGREEN’S PHARMACY

2.3.2.2 Inpatient Information
The following data items are extracted from the V HOSPITALIZATION file and will
be present only if the visit is a Hospitalization (service category = H).

2.3.2.2.1 Routine - APCLV

ADMSERV(v,f) Returns ADMITTING SERVICE for visit v in format f
arguments

v - visit ien, must be a hospitalization
f - optional format; if null, returns internal FileMan format of treating
specialty entry (ien)

I - internal FileMan format
 E - external format

C - IHS Code
examples

W $$ADMSERV^APCLV(1234,“I”) => 3
W $$ADMSERV^APCLV(1234,“E”) => PEDIATRICS
W $$ADMSERV^APCLV(1234,“C”) => 15

DSCHSERV(v,f) Returns DISCHARGE SERVICE for visit v in format f
arguments

v - visit ien
f - optional format; if null, returns internal FileMan format of treating
specialty entry (ien)

I - internal FileMan format
 E - external format

C - IHS Code
examples

W $$DSCHSERV^APCLV(1234,“I”) => 3
W $$DSCHSERV^APCLV(1234,“E”) => PEDIATRICS
W $$DSCHSERV^APCLV(1234,“C”) => 15

Developers’ Tools
88 September 2005

Standards and Conventions Developers’ Handbook

ADMTYPE(v,f) Returns ADMISSION TYPE for visit v in format f
arguments

v - visit ien, must be a hospitalization
f - optional format; if null, returns internal FileMan format of admission
type entry (ien)

I - internal FileMan format

 E - external format

C - IHS Code

examples

W $$ADMTYPE^APCLV(1234,“I”) => 3
W $$ADMTYPE^APCLV(1234,“E”) => DIRECT
W $$ADMTYPE^APCLV(1234,“C”) => 02

DSCHTYPE(v,f) Returns DISCHARGE TYPE for visit v in format f
arguments

v - visit ien, must be hospitalization
f - optional format; if null, returns internal FileMan format of treating
specialty entry (ien)

I - internal FileMan format

 E - external format

C - IHS Code

examples

W $$DSCHTYPE^APCLV(1234,“I”) => 2
W $$DSCHTYPE^APCLV(1234,“E”) => AWOL
W $$DSCHTYPE^APCLV(1234,“C”) => 03

DSCHDATE(v,f) Returns DISCHARGE DATE for visit v in format f
arguments

v - visit ien
f - optional format; if null, returns internal FileMan format of visit date
 I - internal FileMan format
 E - external written-out format (MAR 05, 1995)
 S - slash format (03/05/95)

examples
W $$DSCHDATE^APCLV(1234,“I”) => 2950305
W $$DSCHDATE^APCLV(1234,“E”) => MAR 05,1995
W $$DSCHDATE^APCLV(1234,“S”) => 03/05/95

CONSULTS(v) Returns NUMBER OF CONSULTS for hospitalization for
visit v

arguments
v - visit ien

examples
W $$CONSULTS^APCLV(1234) => 2

Developers’ Tools
89 September 2005

Standards and Conventions Developers’ Handbook

LOS(v) Returns LOS for visit hospitalization visit v
arguments

v - visit ien
examples

W $$LOS^APCLV(1234) => 4

FACTX(v,f) Returns FACILITY TRANSFERRED TO for visit v in format f
arguments

v - visit ien, must be a hospitalization
f - optional format; if null, returns internal FileMan format of facility

I - internal FileMan format
 E - external format
 C - IHS ASUFAC if an IHS facility

examples
W $$FACTX^APCLV(1234,“I”) => DIC(4;123)

W $$FACTX^APCLV(1234,“E”) => SELLS HOSPITAL

W $$FACTX^APCLV(1234,“C”) => 000101

ATTPHY(v,f) Returns ATTENDING PHYSICIAN for visit v in format f
arguments

v - visit ien, must be a hospitalization
f - optional format; if null, returns internal FileMan format of provider
entry (ien)

I - internal FileMan format
T - provider’s initials

 A - affiliation, internal format; e.g., 1
 B - affiliation, external format; e.g., IHS

C - provider code; e.g., JDS
D - provider’s discipline code; e.g., 01

 E - provider’s discipline, external format; e.g., PHYSICIAN
 F - provider’s discipline, internal format; e.g., 1 (ien of provider class)
 N - provider’s name; e.g., SMITH,JOHN DAVID

O - provider’s affiliation_discipline; e.g., 101
P - provider’s affiliation_discipline_code; e.g., 101JDS

examples
W $$ATTPHY^APCLV(1234,“P”) => 101JDS
W $$ATTPHY^APCLV(1234,“E”) => PHYSICIAN

ADMDX(v,f) Returns ADMITTING DIAGNOSIS for visit v in format f
arguments

v - visit ien, must be a hospitalization
f - optional format; if null, returns ICD Diagnosis code

I - internal FileMan format (ICD9 ien)
E - external of ICD9 code (HYPERTENSION)
C - ICD Code; e.g., 250.00

examples

Developers’ Tools
90 September 2005

Standards and Conventions Developers’ Handbook

W $$ADMDX^APCLV(1234,“I”) => 2477
W $$ADMDX^APCLV(1234,“E”) => HYPERTENSION
W $$ADMDX^APCLV(1234,“C”) => 250.00

2.3.2.3 Visit Measurement Information

2.3.2.3.1 Routine – APCLV
The following data is extracted from the V Measurement file, file 9000010.01.
One or more measurements may have been taken on any one visit; therefore, an
array is passed back that contains all of the measurements taken on that visit.

Call to Pass Back an Array of Data from V Measurement

FORMAT: S E=$$PCCVF^APCLV(v,t,f)
An array (APCLV) will be passed back that contains a list of all measurements
that were taken on visit v. The information passed back will be in format f. If an
error was encountered, E will be passed back as one of the following error codes:

1 - no value for t, type of data wanted

2 - no value for f, format of data wanted

3 - no value for v, visit

4 - invalid visit ien passed

5 - invalid type of data passed in t

It is the caller’s responsibility to kill array APCLV before and after the call to
PCCVF^APCLV.

arguments
v - visit ien

t - is defined as the type of V File you want. For measurements, it must be
the word MEASUREMENT.

f - is defined as the format of the data you want and it will depend on the
V file being looked at. You may specify several numbers in the string: 7;8
or 1;3;7;8, for example. If you specify several items in f, they will be
returned in the corresponding “^ piece of APCLV. In the case of 1;3;7;8,
the value for 1 will be in the first piece, the value for 3 in the second
piece, the value for 7 in the third piece, and the value for 8 in the fourth
piece. Each value of f is described below.

1 - visit date and time in internal FileMan format; e.g., 2950402
2 - visit date and time in external FileMan format, e.g., 04/02/95
3 - internal IEN of patient; e.g., 234
4 - external name of patient; e.g., SMITH,JOHN
5 - internal value of measurement type; e.g., 4
6 - external value of measurement type; e.g., BLOOD PRESSURE

Developers’ Tools
91 September 2005

Standards and Conventions Developers’ Handbook

7 - coded value of measurement type; e.g., BP

8 - value of measurement; e.g., 120/90

9 - CPT Code for measurement type (if available)

09 - each of the above items in a “^” pieced string where each

piece is equal to the number above; e.g.,

2950402^04/02/95^23^SMITH,JOHN^1^

WEIGHT^WT^175^^^^^^”

examples
S E= $$PCCVF^APCLV(1234,“MEASUREMENT”,“7”)

Will return:
APCLV(1)=BP
APCLV(2)=WT
APCLV(3)=HT

S E=PCCVF^APCLV(1234,“MEASUREMENT”,“7;8”)
Will return:

APCLV(1)=BP^120/80
APCLV(2)=WT^125
APCLV(3)=HT^65

S E=PCCVF^APCLV(1234,“MEASUREMENT”,“99”)
Will return:

APCLV(1)=2950402^04/02/95^123^SMITH,JOHN^4^BL
OOD PRESSURE ^BP^120/90
APCLV(2)=2950402^04/02/95^123^SMITH,JOHN^2^WE
IGHT^WT^125

NMSR(v) Returns NUMBER OF MEASUREMENTS taken on visit v
arguments

v - visit ien
examples

W $$NMSR^APCLV(1234) => 3

2.3.2.4 Visit Provider Information

2.3.2.4.1 Routine - APCLV
The following data is extracted from the V PROVIDER file, file 9000010.06. One
or more providers may be listed for any one visit; therefore, an array is passed
back that contains all of the providers for that visit.

Call to Pass Back an Array of Data from V Provider

FORMAT: S E=$$PCCVF^APCLV(v,t,f)
You will be passed back an array (APCLV) that contains a list of all providers
that were seen on visit v. The information passed back will be in format f. If an
error is encountered, E will be passed back as one of the following error codes:

Developers’ Tools
92 September 2005

Standards and Conventions Developers’ Handbook

1 - no value for t, type of data wanted

2 - no value for f, format of data wanted

3 - no value for v, visit

4 - invalid visit ien passed

5 - invalid type of data passed in t

It is the caller’s responsibility to kill array APCLV before and after the call to
PCCVF^APCLV.
arguments

v - visit ien

t - is defined as the type of V file you want. For providers, it must be the word
PROVIDER.

f - is defined as the format of the data you want and it will depend on the V file
being looked at. You may specify several numbers in the string: 7;8 or 1;3;7;8, for
example. If you specify several items in f, they will be returned in the
corresponding “^ piece of APCLV. In the case of 1;3;7;8, the value for 1 will be
in the first piece, the value for 3 in the second piece, the value for 7 in the third
piece, and the value for 8 in the fourth piece. Each value of f is described below.

1 - visit date and time in internal FileMan format; e.g., 2950402
2 - visit date and time in external FileMan format; e.g., 04/02/95
3 - internal ien of patient; e.g., 234
4 - external name of patient; e.g., SMITH,JOHN
5- internal value of provider entry; e.g., 4
6 - provider’s initials; e.g., JDS
7 - affiliation, internal format; e.g., 1
8 - affiliation, external format; e.g., IHS
9 - provider code; e.g., JDS
10 - provider’s discipline code; e.g., 01
11 - provider’s discipline, external format; e.g., PHYSICIAN
12 - provider’s discipline, internal format; e.g., 1 (ien of provider class)
13- provider’s name; e.g., SMITH,JOHN DAVID
14 - provider’s affiliation_discipline; e.g., 101
15 - provider’s affiliation_discipline_code; e.g., 101JDS
16 - primary or secondary; e.g., P
17 - primary or secondary, external; e.g., PRIMARY
18 - operating/attending, internal; e.g., O
19 - operating/attending, external; e.g., Operating
99 - each of the above items in a “^” pieced string where each piece is
equal to the number above; e.g., 2950402^04/02/95^23^JONES,MARY
^34^JS^1^IHS^JS^01^PHYSICIAN^1^SMITH,JOHN^101^101JS

examples
S E=PCCVF^APCLV(1234,“PROVIDER”,“7”)

Will return:

Developers’ Tools
93 September 2005

Standards and Conventions Developers’ Handbook

APCLV(1)=1
APCLV(2)=1
APCLV(3)=1

S E=PCCVF^APCLV(1234,“PROVIDER”,“7;8”)
Will return:

APCLV(1)=1^IHS

APCLV(2)=1^IHS

S E=PCCVF^APCLV(1234,“PROVIDER”,“99”)
Will return:

APCLV(1)=“2960125^1/25/96^50^SMITH,JIMALLEN^
618^LAB^3^TRIBAL^LAB^53^COMMUNITY HEALTH
REP.^47^BUTCHER,LORI
ANN^353^353LAB^P^PRIMARY^^”

PRIMPROV(v,f) Returns PRIMARY PROVIDER for visit v in format f
arguments

v - visit ien
f - optional format; if null, returns internal FileMan format of provider
entry (ien)

I - internal FileMan format

T - provider’s initials

 A - affiliation, internal format; e.g., 1

 B - affiliation, external format; e.g., IHS

C - provider code; e.g., JDS

D - provider’s discipline code; e.g., 01

 E - provider’s discipline, external format; e.g., PHYSICIAN
 F - provider’s discipline, internal format; e.g., 1 (ien of provider
class)
 N - provider’s name; e.g., SMITH,JOHN DAVID

O - provider’s affiliation_discipline; e.g., 101
P - provider’s affiliation_discipline_code; e.g., 101JDS

examples
W $$PRIMPROV^APCLV(1234,“P”) => 101JDS
W $$PRIMPROV^APCLV(1234,“E”) => PHYSICIAN

SECPROV(v,f,n) Returns the nth SECONDARY PROVIDER for visit v in
format f

arguments
v - visit ien
f - optional format; if null, returns internal FileMan format of provider
entry (ien)
 I - internal FileMan format

T - provider’s initials

 A - affiliation, internal format; e.g., 1

 B - affiliation, external format; e.g., IHS

Developers’ Tools
94 September 2005

Standards and Conventions Developers’ Handbook

C - provider code; e.g., JDS
D - provider’s discipline code; e.g., 01

 E - provider’s discipline, external format; e.g., PHYSICIAN
 F - provider’s discipline, internal format; e.g., 1 (ien of provider class)
 N - provider’s name; e.g., SMITH,JOHN DAVID

O - provider’s affiliation_discipline; e.g., 101
P - provider’s affiliation_discipline_code; e.g., 101JDS

examples
W $$SECPROV^APCLV(1234,“P”) => 101JDS
W $$SECPROV^APCLV(1234,“E”) => PHYSICIAN

MIDWIFE(v) Returns 1 if one of the providers is a midwife
arguments

v - visit ien
examples

W $$MIDWIFE^APCLV(1234) => 1

2.3.2.5 Purpose of Visit Information

2.3.2.5.1 Routine - APCLV
The following data is extracted from the V POV file, file 9000010.07. There may
be one or more POVs for any one visit; therefore, an array is passed back that
contains all of the POVs for that visit.

Call to Pass Back an Array of Data from V Pov

FORMAT: S E=$$PCCVF^APCLV(v,t,f)
The user will be passed back an array (APCLV) that contains a list of all POVs
that were seen on visit v. The information passed backed will be in format f. If an
error was encountered, E will be passed back as one of the following error codes:

1 - no value for t, type of data wanted

2 - no value for f, format of data wanted

3 - no value for v, visit

4 - invalid visit ien passed

5 - invalid type of data passed in t

It is the caller’s responsibility to kill array APCLV before and after the call to
PCCVF^APCLV.

arguments
v - visit ien

t - is defined as the type of V File you want; for POVs, it must be the word
POV.

Developers’ Tools
95 September 2005

Standards and Conventions Developers’ Handbook

f - is defined as the format of the data you want and will depend on the V
file being looked at. You may specify several numbers in the string: 7;8 or
1;3;7;8, for example. If you specify several items in f, they will be
returned in the corresponding “^ piece of APCLV. In the case of 1;3;7;8,
the value for 1 will be in the first piece, the value for 3 in the second
piece, the value for 7 in the third piece, and the value for 8 in the fourth
piece. Each value of f is described below.
 1 - visit date and time in internal FileMan format; e.g., 2950402
 2 - visit date and time in external FileMan format; e.g., 04/02/95

3 - internal IEN of patient; e.g., 234
 4 - external name of patient; e.g., SMITH,JOHN

5 - internal value of POV entry; e.g., 4
6 - external ICD code text; e.g., HYPERTENSION
7 - ICD code; e.g., 250.00
8 - APC Recode; e.g., 020
9 - Cause of DX, internal; e.g., 1
10 - Cause of DX, external; e.g., Alcohol-related
11 - Cause of Injury; e.g., E900.2
12 - Place of Injury, internal; e.g., A
13 - Place of Injury, external; e.g., HOME-INSIDE
14 - Provider Narrative

 15 - Primary/Secondary code, internal; e.g., P
 16 - primary or secondary; e.g., PRIMARY

17 - Date of injury; e.g., 09/01/95
18 - Stage; e.g., 4
19 - Modifier, internal; e.g., 1
20 - Modifier, external; e.g., Rule Out

 99 - each of the above items in a “^” pieced string where each piece is
equal to the number above.

examples
S E=$$PCCVF^APCLV(72555,“POV”,99)
APCLV(1)=“2960125^1/25/96^50^SMITH,JAMES A^101531^DM
UNCOMPL/T-II/NIDDM,NS UNCON^250.00^080^^^^^^DIABETES
MELLITUS:PATIENT CARE - CHR^^^^^^”

PRIMPOV(v,f) Returns PRIMARY POV for visit v in format f
arguments

v - visit ien
f - optional format; if null, returns internal FileMan format of POV entry
(ien)

I - internal FileMan format
E - ICD9 text
C - ICD9 code
A - APC RECODE
D - Cause of Dx (internal)
J - Cause of Injury code

Developers’ Tools
96 September 2005

Standards and Conventions Developers’ Handbook

P - Place of Injury (code)
N - Provider Narrative

examples
W $$PRIMPOV^APCLV(1234,“P”) => A
W $$PRIMPOV^APCLV(1234,“E”) => 250.00

SECPOV(v,f,n) Returns the nth SECONDARY POV for visit v in format f
arguments

v - visit ien
f - optional format; if null, returns internal FileMan format of POV entry
(ien)
I - internal FileMan format
E - ICD9 text
C - ICD9 code
A - APC RECODE
D - Cause of Dx (internal)
J - Cause of Injury code
P - Place of Injury (code)
N - Provider Narrative

examples
W $$SECPOV^APCLV(1234,“P”) => A
W $$SECPOV^APCLV(1234,“E”) => 311

2.3.2.6 Miscellaneous PCC Calls
Information for these calls is taken from various V files.

NLAB(v) Returns NUMBER OF LABS done on visit v
arguments

v - visit ien
examples

W $$NLAB^APCLV(1234) => 12

NRX(v) Returns NUMBER OF MEDICATIONS prescribed on visit v
arguments

v - visit ien
examples

W $$NRX^APCLV(1234) => 3

ACTTIME(v) Returns ACTIVITY TIME for visit v
arguments

v - visit ien
examples

W $$ACTTIME^APCLV(1234) => 10

Developers’ Tools
97 September 2005

Standards and Conventions Developers’ Handbook

TRAVTIME(v) Returns TRAVEL TIME for visit v
arguments

v - visit ien
examples

W $$TRAVTIME^APCLV(1234) => 25

CHSCOST(v,f) Returns TOTAL COST from V CHS file
arguments

v - visit ien
examples

W $$CHSCOST^APCLV(1234) => 12,000

PROC(v,f,n) Returns the nth PROCEDURE for visit v in format f
arguments

v - visit ien
f - optional format; if null, returns internal FileMan format of
PROCEDURE entry (ien)

I - ien of ICD0 code
 E - external of ICD0 code; e.g., appendectomy

C - ICD0 code; e.g., 44.10
P - CPT CODE
T - CPT internal ien

 D - date of procedure/internal FileMan format
 G - date of procedure/external format

F - infection Y/N
R - operating provider affl_disc_code
X- dx done for
N - provider’s narrative

examples
W $$PROC^APCLV(1234,“R”,1)=> 101JDS
W $$PROC^APCLV(1234,“E”,1)=> APPENDECTOMY

IMM(v,f,n) Returns the nth IMMUNIZATION for visit v in format f
arguments

v - visit ien
f - optional format; if null, returns internal FileMan format of
IMMUNIZATION entry (ien)
I - ien of immunization entry
E - immunization external format - OPV
C - immunization code - 06
P - CPT CODE
S - series

examples
W $$IMM^APCLV(1234,“C”,1) => 06
W $$IMM^APCLV(1234,“E”,1) => OPV

Developers’ Tools
98 September 2005

Standards and Conventions 	 Developers’ Handbook

DENT(v,f,n) Returns the nth V DENTAL ENTRY for visit v in format f
arguments

v - visit ien
f - optional format; if null, returns internal FileMan format of ADA CODE
entry (ien)

I - ien of ADA entry
 E - ADA CODE external format

C - ADA code - 0110
examples

W $$DENT^APCLV(1234,“C”,1) => 0110

2.3.3 Visit Creation API

2.3.3.1 New API for Creating/Selecting PCC Visit

Background:
Prior to this new API, several RPMS packages made calls to PCC or VA Visit
Tracking to create visits. In some cases, creating a new visit was not appropriate
since one already existed. Some applications always created the main patient visit,
while others created an “ancillary” visit to be merged with the main visit at a later
time. In other cases, the same application would create duplicate visits, even when it
had created the previous one. With EHR, providers were confused as to whether they
were supposed to create a new visit or use one already there.

We have designed and created a new API to be used by those applications needing to
create a PCC visit where one of the above mentioned problems exist. This new API
can be used to create main visits as well as “ancillary” ones. It will also return any
existing visits that meet the criteria, so duplicates can be avoided. Each calling
application decides what to do with the results it receives from the API. This API, by
itself, does not solve the various problems. With its use by various RPMS packages,
improvements will occur.

Primary call is made to a routine in the PCC namespace. It checks to make sure
PIMS v5.3 is running and the BSDAPI4 routine exists (released with patch 1002).
Then it simply calls the PIMS routine. This keeps all visit creation calls inside PCC
but keeps support of the Scheduling logic added in this new API inside PIMS.

Logic Flow:
1.	 If sending application says force adding a new visit, just create visit and quit

with returning array.

2.	 Attempt to find visits that match incoming data.

a.	 Match on date and optional time range (i.e. within 60 minutes)

Developers’ Tools
99 	September 2005

Standards and Conventions 	 Developers’ Handbook

b.	 Match on location of encounter (Visit field .06)

c.	 Match on visit type (Visit field .03)

d.	 Match on service category (Visit field .07)

e.	 If provider is sent, match on provider

f.	 If not called in ancillary mode, match clinic code or hospital location
if sent; if matches on clinic code & existing visit is for “triage” clinic,
it’s a match

g.	 Return # of visits that match and array with visit internal entry
numbers

3.	 If calling application sent appointment date & wants a visit added if match not
found (Never Add not set), drops to check-in code, step 9.

4.	 If only one visit was found, quit with returning array.

5.	 If more than one visit found, quit with returning array. Calling application
decides what to do next. Next step might be to call API again with “force
add” set.

6.	 If no visit found, quit if in “Never Add” mode”.

7.	 If calling in ancillary mode, either find another ancillary visit already there or
create one with a time of noon, then quit with returning array.

8.	 If no appointment date/time sent, just create a visit and quit with array.

9.	 If patient already has appointment at that date/time, call check-in code which
will also create visit then quit with returning array.

10. Otherwise, create walk-in appointment which is checked in and visit created.
Quit with returning array.

Public Entry Points:
Called using D GETVISIT^APCDAPI4(.IN,.OUT) which calls
GETVISIT^BSDAPI4

Where IN array holds all incoming variables as detailed below

Where OUT array is returned with # of visits found and visit internal entry
numbers

Optional API, for use by ancillary applications in roll & scroll mode and is called
by using

Developers’ Tools
100 	September 2005

Standards and Conventions Developers’ Handbook

S VISIT=$$EN^BSDAPI3(patient IEN, default clinic, default reason, item).
This interactive API finds all appointments patient has that day. It lists them for
the user to select with “walk-in to ancillary department” as last choice. This API
then calls the main one (BSDAPI4) to check in patient and create visit.

Inputs and Outputs for GETVISIT^APCDAPI4: (documented in routine)
Special Incoming Variables: OPTIONAL
IN("FORCE ADD") = 1 ; no matter what, create new visit
IN("NEVER ADD") = 1 ; never add visit, just try to find one or more
IN("ANCILLARY") = 1 ; for ancillary packages to create noon visit if no
match found

Incoming Variables used in Matching: REQUIRED

IN("PAT") = patient IEN (file 2 or 9000001)

IN("VISIT DATE") = visit date & time (same as check-in date & time)

IN("SITE") = location of encounter IEN (file 4 or 9999999.06)

IN("VISIT TYPE") = internal value for field .03 in Visit file

IN("SRV CAT") = internal value for service category

IN("TIME RANGE") = range in minutes for matching on visit time;

REQUIRED unless FORCE ADD set
 zero=exact matches only; -1=don't match on time

These are Used in Matching, if Sent: OPTIONAL
IN("PROVIDER") = IEN for provider to match from file 200
IN("CLINIC CODE") = IEN of clinic stop code (file 40.7)
IN("HOS LOC") = IEN of hospital location (file 44)

Incoming Variables Used in Creating Appt and Visit
IN("USR") = user IEN in file 200; REQUIRED
IN("APPT DATE") = appt date & time; OPTIONAL
IN("OPT") = name for Option Used To Create field, for check-in only ;

OPTIONAL
IN("OI") = reason for appointment; used for walk-ins; OPTIONAL

Incoming PCC Variables for Adding Additional Info to Visit: OPTIONAL

IN("APCDTPB") = Third Party Billed (#.04)

IN("APCDPVL") = Parent Visit Link (#.12)

IN("APCDAPPT") = Walk-In/Appt (#.16)

IN("APCDEVM") = Evaluation and Management Code (#.17)

IN("APCDCODT") = Check Out Date & Time (#.18)

IN("APCDLS") = Level of Service -PCC Form (#.19).

IN("APCDVELG") = Eligibility (#.21)

IN("APCDPROT") = Protocol (#.25).

IN("APCDOPT") = Option Used To Create (IEN) (#.24)

Output Array: (Calling application uses it to evaluate next step)

Developers’ Tools
101 September 2005

Standards and Conventions 	 Developers’ Handbook

OUT(0) always set; 	 if = 0 none found and may have error message in 2nd piece
if = 1 and OUT(visit IEN)="ADD" new visit just created
if = 1 and OUT(visit IEN)= # (time difference in minutes)
if >1, OUT(visit IEN) for each entry; = # of minutes

difference

Inputs and Outputs for EN^BSDAPI3: (documented in routine)
Incoming Variables:

DFN - Patient IEN

BSDCLD - Clinic Default IEN for ancillary walk-in visits

BSDREAS - Default reason for appt ("lab draw", "radiology walk-in", etc.)

BSDITEM - Item name ("test(s)", "exam", "prescription", "order")

Phrasing up to calling routine

Returning Value:
Returns string - first piece is Visit IEN or zero if error occurred

 second piece is error message

Logic Notes:
Calling ancillary package must check the INTERACTIVE LINK field of the
PACKAGE multiple in the PCC MASTER CONTROL file to see if the facility
wants to use this interactive mode.

The default clinic for ancillary walk-ins, is stored in the DEFAULT HOSPITAL
LOCATION filed under the PACKAGE multiple of the PCC MASTER
CONTROL file.

To alert clinics that an appointment was checked in by an ancillary service, the
status on the Scheduling display flashes. The Scheduling check-in process has
been modified to allow updating visit clinic code and provider in addition to
check-in time. Once updated, the status no longer flashes.

Programming Hints:
Main API can be called multiple times. Depending on results of first call,
application can call it again with different variables set.

By using “ancillary mode”, applications will either link with the one visit that
matches OR create a noon visit for merging later by PCC. If ordering provider is
sent, it will attempt to match on provider. No match on clinic code or hospital
location will occur in “ancillary mode”.

Optional matching variables (provider, clinic code and hospital location) need to
be used carefully to prevent duplicate visits from still being added.

Developers’ Tools
102 	September 2005

Standards and Conventions Developers’ Handbook

Time ranges do span midnight when looking for matching visits.

Results returning multiple matches, need to be handled by calling application.
Either a user interface needs to be created to ask user to make a choice OR
application may just call API again with “force add” set, if user unlikely to be
able to make that choice.

Silent call to update Scheduling check-in data, must include appointment
date/time and hospital location and must not include force add, never add or
ancillary mode variables. Send provider if you want provider added to visit. The
old call to CHECKIN^BSDAPI is no longer a public entry point.

Check-in code now allows more than one appointment to point to the same PCC
visit. The primary provider will be the provider on the last appointment. The
hospital location will also be for the last appointment.

Check-in will match on hospital location and provider, if sent. It will also match
if existing visit was to a “triage” clinic and matches on clinic code. “Triage”
clinic is defined by new field under Set Up A Clinic in Scheduling (ScreenMan
page 4 under option).

Developers’ Tools
103 September 2005

Visit Creation logic flow – basic decision points

Standards and Conventions Developers’ Handbook

MAIN

Return
VIEN

1
found

Force
Add

>1 or 0
found

Ancillary
mode

Appt
D/T

Pt
Has
Appt

Find Matching
Visits

Return VIEN
array

Walk-In

Create
Visit

Create
Visit

Create (noon)
visit

Yes

No

No

No

No

No

Q

Q

Q

Q

Q

Q

Have

Check In

Check In

Create Visit

Yes

Yes

Yes

Yes

Developers’ Tools
104 September 2005

Standards and Conventions Developers’ Handbook

2.3.3.2 Previous API for Creating/Selecting PCC Visit

Call is EN^APCDALV with the following variables set:

Input variables:
APCDALVR("APCDADD")="" Forces the creation of a new visit if set

APCDALVR("APCDADF")="" Used only with user interaction. If set, the
default will be for adding a new visit entry.

APCDALVR("APCDAUTO")="" If this variable exists, a visit is searched for

at the exact date and time passed in variable APCDDATE. If no visit exists at

that date/time then one is created.

APCDALVR("AUPNTALK")="" This variable must exist to prevent

subsequent interaction with the user.

APCDALVR("APCDANE")="" This variable must exist to prevent FileMan

from echoing information back to the screen.

Now variables that correspond to data fields:

APCDALVR("APCDDATE")= Date and time of visit in internal FileMan

format. If time is NOT passed, 12 noon will be appended. (#.01)

APCDALVR("APCDTYPE")= Type of visit (internal format; #.03). See Visit

file for choices. If omitted, it will default to "I" for "IHS".

APCDALVR("APCDPAT")= Patient internal entry number (#.05).

APCDALVR("APCDLOC")= Location of visit – facility (#.06). Must be a

valid pointer to the Location file (#9999999.06).

APCDALVR("APCDCAT")= Service Category of Visit (internal format). See

field #.07 for choices. If omitted, it will default to "A" for "Ambulatory".

APCDALVR("APCDCLN")= Clinic code (#.08). Must be a valid pointer to

the Clinic Stop file. If omitted it will default to null if visit is created.

APCDALVR(“APCDHL”)= Hospital Location pointer (#.22).

Other lesser used variables:

APCDALVR(“APCDTPB”) Third Party Billed (#.04)

APCDALVR(“APCDPVL”) Parent Visit Link (#.12)
APCDALVR(“APCDAPPT”) WalkIn/Appt (#.16)

Developers’ Tools
105 September 2005

Standards and Conventions Developers’ Handbook

APCDALVR(“APCDEVM”) Evaluation and Management Code (#.17)
APCDALVR(“APCDCODT”) Check Out Date & Time (#.18)
APCDALVR(“APCDLS”) Level of Service -PCC Form (#.19).
APCDALVR(“APCDVELG”) Eligibility (#.21)
APCDALVR(“APCDOPT”) Option Used to Create (#.24).
APCDALVR(“APCDPROT”) Protocol (#.25).
APCDALVR(“APCDAPDT”) Appt Date & Time (.26).

 Coding sequence:

K APCDALVR
Set APCDALVR array. See details below.

D EN^APCDALV

If APCDALVR("APCDAFLG") exists, error has occurred and needs to be

processed

Else, set variable in your namespace to APCDALVR("APCDVSIT")

K APCDALVR

Output variables:

APCDALVR("APCDVSIT") This variable will contain a pointer to the visit entry
just selected or created. Or it will be set to null if no visit entry was selected or
created.

APCDALVR("APCDVSIT("NEW")") This variable will exist if a new visit was
created..

APCDALVR("APCDAFLG") If this variable exists, it is an indication of on of
the following:

Set to 1: user typed "?" and failed to select a visit

Set to 2: Visit failed FileMan edits

Example when not forcing add and allowing user interaction, and there is another
visit for the same patient, same date (time could be different) and clinic code :

K APCDALVR

S APCDALVR("APCDPAT")=30

S APCDALVR("APCDDATE")=3030307.1201

S APCDALVR("APCDLOC")=DUZ(2)

S APCDALVR("APCDTYPE")="I"

S APCDALVR("APCDCAT")="A"

S APCDALVR("APCDCLN")=28

D EN^APCDALV

PATIENT: BOSH,DARRELL W has VISITs, same date, location.

Developers’ Tools
106 September 2005

Standards and Conventions Developers’ Handbook

1 Create New VISIT

2 Exit without selecting VISIT

3 Display one of the existing VISITs

Or select one of the following existing VISITs:

4 TIME: 14:30 TYPE: I CATEGORY: A CLINIC: FAMILY PRA DEC: 2

Choose one: (1-4): 4//

2.3.4 Other PCC Data Entry APIs
Other Callable Entry Points in PCC Data Entry: (details on following pages)

EN^APCDVDSP

EN^APCDCHKJ

EN^APCDALVR

EN^APCDVDLT

EN^APCDEIN

START^APCDCVDT

EN^APCDEA3

EN1^APCDEKL

EN1^APCDPL

ADDPROB^APCDALV2

DELPROB^APCDALV2

APCDVD

GETVISIT^APCDDISP

APCDVLK

EN^APCDEFL

Interactive Visit Display.

Link In-Hospital Visits to Hospitalizations.

Called to create a V File entry in PCC.

Called to delete a visit in PCC.

Sets up APCD environment variables.

Changes a visit date and time.

Process one mnemonic in PCC Data Entry

Kills APCD variables.

Interactive Problem List updating (DFN = patient).

Non-interactive add a problem to problem list.

Non-interactive delete a problem from problem list.

Display a visit. (pass in visit ien)

Get a visit for display.

 Lookup visit.

Edit Visit List template call

Developers’ Tools
107 September 2005

Standards and Conventions Developers’ Handbook

2.3.4.1 Interactive Visit Display: EN^APCDVDSP

Set APCDVDSP = visit internal entry number then call EN^APCDVDSP

Link In-Hospital Visits to Hospitalizations: EN^APCDCHKJ

Called by Billing and any other application that needs to insure all In-Hospital visits
are linked to their respective Hospitalization visits prior to performing another
function. Simply call EN^APCDCHKJ.

2.3.4.2 Create entries in Visit-related files: EN^APCDALVR

The caller must set the appropriate variables required by the input template. Most of
the input templates will be attached to the Visit file. If an ancillary system wants to
put data in a non-Visit related file, the variable APCDAFLE must be set. Except for
visit and patient, all other variables are input template specific.

Call this routine for each file in which you want to create an entry and for each entry
in the file. One call, one file, one entry.

Coding sequence:

K APCDALVR
Set APCDALVR array. See details below.
D EN^APCDALVR
If APCDALVR("APCDAFLG") exists, error has occurred and needs to be
processed
Else, set variable in your namespace to APCDALVR("APCDADFN")
K APCDALVR

Input variables:

APCDALVR("APCDPAT") Patient internal entry number

APCDALVR("APCDVSIT") Visit internal entry number

APCDALVR("APCDATMP") Name of input template including the
brackets. Example: "[APCDALVR 9000010.14 (ADD)]" where 9000010.14
is the V-file
number and (ADD) or (MOD) signify if you are adding a new entry or
modifying one. These templates are created by the PCC Data Entry developer
upon request.

Developers’ Tools
108 September 2005

Standards and Conventions Developers’ Handbook

APCDAFLE("APCDAFLE") Number of file to which input template is
attached. 90000010 is assumed if not set.

APCDALVR("XXX") Each input template has other variables to set,
required and optional. See the following pages for details.

Output variables:

APCDALVR("APCDAFLG") Will exist if an error occurred. The meaning
is as follows:

Set to 1 means the input template either was not bracketed by [] or it
did not exist for the file specified.

Set to 2 means one or more of the fields failed FileMan edits or
 security checks.

APCDALVR("APCDADFN") Set to internal entry number of entry in
V-file or set to null if none selected.

NOTE: ALL DATA SHOULD PASS THE INPUT TRANSFORM BEFORE
BEING PASSED TO PCC. THE CALLER IS RESPONSIBLE FOR DEALING
WITH ANY V FILE FAILURES. FOR PROVIDER FIELDS, PLEASE CHECK
PCC DATA DICTIONARY TO KNOW WHICH FILE POINTER TO SEND (6
OR 200).

V MEASUREMENT entries:
Input template: [APCDALVR 9000010.01 (ADD)]

Field Name Variable Data description
.01 Measurement APCDTTYP Pass as a "`" concatenated with the

measurement type IEN or pass the
measurement code.

.02 Patient Name APCDPAT Patient IEN (Required)

.03 Visit APCDVSIT Visit IEN (Required)

.04 Value APCDTVAL Measurement value; see input transform
for details.

.05 Percentile APCDTPCT

1201 Event Date/Time APCDTCDT Date/time measurement was taken

Developers’ Tools
109 September 2005

Standards and Conventions 	 Developers’ Handbook

1202 Ordering Provider APCDTPRV Provider who ordered measurement be
taken. Caller must check to see if this

field points to file 6 or 200 to identify which
IEN to send.

1203 Clinic APCDTCLN Points to Clinic Stop file

1204 Encounter Provider 	 APCDTEPR Provider who took
measurement. Caller must check to see if
this field points to file 6 or 200 to identify
which IEN to send.

1208 Parent APCDTPNT Points to another V Measurement entry

1209 External Key APCDTEXK

1210 Outside Provider APCDTOPR 	 Free text name

V Hospitalization entries: ONLY USE BY ADT IN ADD MODE!!!!
Input template: [APCDALVR 9000010.02 (ADD)]

Field Field Name Variable Data description
.01 Discharge Date APCDLOOK Discharge Date and Time in FileMan

format.

.02 Patient Name APCDPAT 	 Patient IEN (Required)

.03 Visit APCDVSIT 	 Visit IEN (Required)

.04 Admtng Service APCDTADS Pass as a "`" concatenated with the IEN
for the admission service from file 45.7

(Facility Treating Specialty) Required

.05 Dischrge Service APCDTDCS Pass as a "`" concatenated with the IEN
for the discharge service from file 45.7

(Facility Treating Specialty) Required

.06 Discharge Type APCDTDT Pass as a "`" concatenated with the IEN
for the discharge movement type from file

405.1 (Facility Movement Type)
Required

.07 Admission Type APCDTAT Pass as a "`" concatenated with the IEN
for the admission movement type from file

Developers’ Tools
110 	September 2005

Standards and Conventions 	 Developers’ Handbook

405.1 (Facility Movement Type) Required

.08 No. of Consults APCDTNC 	 Number

.09 Transferred To APCDTTT 	 Variable pointer. Send as
"VA/IHS.`"_IEN from File 4
(Institution file) or "VENDOR.`"_IEN
from file 9999999.11 (Vendor file)
Changed in PIMS v5.3!!!! Now a pointer
to Transfer Facility file (9999999.91).
Pass as a "`" concatenated with the IEN.

.11 Medicare ReleaseAPCDTMCR Y for YES or N for NO

.12 Admitting Dx. APCDTADX Pass as a "`" concatenated with the IEN
from the ICD9 file 80. Required Field

.13 Assignment of Benefits APCDTAOB Y for YES or N for NO

6101 Admission Type-UB92 APCDTATU Set of codes; pass internal format

6102 Admission Source-OB92 APCDTASU Pass as a “`” concatenated with the
IEN from the Admission Source file
(9999999.53).

6103 Discharge Status-UB92 APCDTDTU Set of codes; pass internal format

V Provider entries:
Input template: [APCDALVR 9000010.06 (ADD)]

Field Field Name Variable Data description
.01 Provider APCDTPRO Pass as a "`" concatenated with the

Provider file (6 or 200) IEN. Caller must
check to see if this field points to file 6 or
200 to identify which IEN to send.

.02 Patient Name APCDPAT Patient IEN (Required)

.03 Visit APCDVSIT Visit IEN (Required)

.04 Primary/Sec APCDTPS P for primary; S for Secondary. Required
Field. There must be one and only one
Primary Provider per visit.

.05 Provider Status APCDTOA Required for Hospitalization visits. O for

Developers’ Tools
111 	September 2005

Standards and Conventions Developers’ Handbook

Operating; A for Attending; C for
Consulting. For other types of visits, null
is sufficient.

1201 Event Date/Time APCDTCDT Date/time provider saw patient

1202 Ordering Provider APCDTPRV Not used.

1203 Clinic APCDTCLN Points to Clinic Stop file

1204 Encounter Provider APCDTEPR Not used.

1208 Parent APCDTPNT Points to another V Provider entry

1209 External Key APCDTEXK

1210 Outside Provider APCDTOPR Free text name

V POV entries:
Input template: [APCDALVR 9000010.07 (ADD)]

Field Field Name Variable Data description
.01 POV ACDTPOV Pass as a "`" concatenated with pointer to

the ICD Diagnosis file or simply pass the
ICD code itself. There is a screen on this
field and it would be wise to execute the
Input Transform on this field prior to
passing the data.

.02 Patient Name APCDPAT Patient IEN (Required)

.03 Visit APCDVSIT Visit IEN (Required)

.04 Prov. Narrative APCDTNQ The provider's narrative. Must be 2-80
characters long. Input transform should
be executed. Required.

.05 Stage APCDSTG Pass a number between 0 and 9. Not
required.

.06 Modifier APCDTMOD Not required. See data dictionary for
definition.

.07 Cause of DX APCDTCD Not Required. See data dictionary for
definition.

Developers’ Tools
112 September 2005

Standards and Conventions 	 Developers’ Handbook

.08 First/Revisit APCDTFR 	 Not Required. See data dictionary for
definition.

.09 Cause of Injury APCDTCI Required if this is marked as a FIRST
visit in field #.08 and if the ICD

diagnosis code is between 800 and 999 (injury
codes). See data dictionary for definition.

.11 Place of Accident APCDTPA Required if this is marked as a FIRST
visit in field #.08 and if the ICD

diagnosis code is between 800 and 999 (injury
codes). See data dictionary for definition.

.12 Primary/Secondary 	 APCDTPS Required for
Hospitalizations. For other visits, the
first POV entered for a visit is considered
the primary one.

.13 Date of Injury APCDTDI 	 Date in FileMan format. Optional.

.14 Override/Accept APCDTACC 	 If an "ACCEPT" command is required for
this POV, this variable must exist and be
set to DUZ for a valid user.

.15 Clinical Term APCDTCT This field is the clinical lexicon term
which most closely represents the
provider narrative of the problem treated.
If VA Lexicon Utility is installed, pass
the “`”_concatenated with the IEN from
the Expressions file (757.01).

.16 Problem List Entry APCDTPLE Pass the “`”_concatenated
with the IEN from the Problem List file.

.17 Date of Onset APCDTDOO Date in FileMan format. Optional.

1201 Event Date/Time APCDTCDT Date/time diagnosis was made

1202 Ordering Provider APCDTPRV Not used.

1203 Clinic APCDTCLN Points to Clinic Stop file

1204 Encounter Provider APCDTEPR Provider who made diagnosis. Caller
must check to see if this field points to
file 6 or 200 to identify which IEN to

Developers’ Tools
113 	September 2005

Standards and Conventions Developers’ Handbook

send.

1208 Parent APCDTPNT Points to another V POV entry

1209 External Key APCDTEXK

1210 Outside Provider APCDTOPR Free text name

V Procedure entries:
Input template: [APCDALVR 9000010.08 (ADD)]

Field Field Name Variable Data description
.01 Procedure ACDTPRC Pass as a "`" concatenated with pointer to

the ICD Operation file or simply pass the
ICD code itself. There is a screen on
this field and it would be wise to execute
the Input Transform on this field prior to
passing the data.

.02 Patient Name APCDPAT Patient IEN (Required)

.03 Visit APCDVSIT Visit IEN (Required)

.04 Prov. Narrative APCDTNQ The provider's narrative. Must be 2-80
characters long. Input transform should
be executed. Required.

.05 Diagnosis APCDTDX Entered only for Hospitalizations.
Should be the ICD diagnosis code for the

operation done. Diagnosis must also
exist in the V POV file for this visit.

.06 Procedure Date APCDTPD Will be the same as the visit date unless
visit is a hospitalization. Date in FileMan
format. Required.

.07 Principal Procedure APCDTPP Used with hospitalizations
only. Y for YES; N for NO.

.08 Infection APCDTINF Used with hospitalizations only. Y for
YES; N for NO.

.09 Override/Accept APCDTACC If an "ACCEPT" command is required for
this POV, this variable must exist and be
set to DUZ for a valid user.

Developers’ Tools
114 September 2005

Standards and Conventions Developers’ Handbook

.11 Operating Provider APCDTOP Provider who performed this
procedure. Pass as a "`" concatenated
with the Provider file (6 or 200) IEN.
Caller must check to see if this field
points to file 6 or 200 to identify which
IEN to send.

.12 Anesthesiologist APCDTAN Anesthesiologist for this procedure. Pass
as a "`" concatenated with the Provider
file (6 or 200) IEN. Caller must check to
see if this field points to file 6 or 200 to
identify which IEN to send.

.13 Elapsed Time(Anesthesia) APCDTET Number

.14 Anesthesia Administered APCDTAA 1 for YES; 0 for NO

.15 ASA/PS Class APCDTAPC ASA-PS CLASS is the American Society
of Anesthesiologists-Physical Status

classification system based on the
presence and severity of disease.

.16 CPT Code APCDTCPT Pass as a "`" concatenated with pointer to
the CPT file or simply pass the CPT code
itself. There is a screen on this field and
it would be wise to execute the Input
Transform on this field prior to passing
the data.

1201 Event Date/Time APCDTCDT Date/time procedure was performed

1202 Ordering Provider APCDTPRV Provider who ordered procedure. Caller
must check to see if this field points to
file 6 or 200 to identify which IEN to
send.

1203 Clinic APCDTCLN Points to Clinic Stop file

1204 Encounter Provider APCDTEPR Provider who performed
procedure. Not used. Field #.11
Operating Provider used instead.

1208 Parent APCDTPNT Points to another V Procedure entry

1209 External Key APCDTEXK

Developers’ Tools
115 September 2005

Standards and Conventions Developers’ Handbook

1210 Outside Provider APCDTOPR Free text name

V Laboratory entries:
Input template: [APCDALVR 9000010.09 (ADD)]

Field Field Name Variable Data description
.01 Lab Test ACDTLAB Pass as a "`" concatenated with the

Laboratory Test file (60) IEN or the lab
test name.

.02 Patient Name APCDPAT Patient IEN (Required)

.03 Visit APCDVSIT Visit IEN (Required)

.04 Results APCDTRES Free Text field. Field has input transform
which should be executed prior to
sending data.

.05 Abnormal APCDTABN Must be deleted if result value changes.

.06 LR Accession No. APCDTACC Free Text. Required.

1101 Units APCDTUNI Units of measure of this particular test.

1102 Order APCDTORD Number

1103 Site APCDTSTE Site the specimen was taken from for this
lab test. Points to Topography Field file
(61). There is a screen on this field and
it would be wise to execute the Input
Transform on this field prior to passing
the data.

1104 Reference Low APCDTRFL Free Text.

1105 Reference High APCDTRFH Free Text.

1106 Therapeutic Low APCDTTHL Free Text.

1107 Therapeutic High APCDTTHH Free Text.

1108 Source of Data Input APCDTSDI 1 for Lab; 0 for Non-Lab. Entered by
software only.

Developers’ Tools
116 September 2005

Standards and Conventions Developers’ Handbook

1109 Current Status Flag APCDTCSF Set of codes. See data dictionary for
details.

1110 Lab Test Cost APCDTCOS Dollar amount.

1111 Billable Item APCDTBIL 1 for YES

1112 Lab POV APCDTLPV Pass as a "`" concatenated with pointer to
the ICD Diagnosis file or simply pass the
ICD code itself.

1113 LOINC Code APCDTLNC Pass as a "`" concatenated with pointer to
the Lab LOINC file (95.3).

1114 Collection Sample APCDTCLS Pass as a "`" concatenated with pointer to
the Collection Sample file (62).

1201 Collection Date/Time APCDTCDT Date/time lab specimen collected

1202 Ordering Provider APCDTPRV Provider who ordered lab test. Caller
must check to see if this field points to
file 6 or 200 to identify which IEN to
send.

1203 Clinic APCDTCLN Points to Clinic Stop file

1204 Encounter Provider APCDTEPR Provider who performed lab test. Caller
must check to see if this field points to
file 6 or 200 to identify which IEN to
send.

1208 Parent APCDTPNT Points to another V Lab entry

1209 External Key APCDTEXK

1210 Outside Provider APCDTOPR Free text name

1211 Ordering Date APCDTODT Date in FileMan format. Used for
merging to patient's main visit along with
ordering provider.

1212 Result Date & Time APCDTRDT Date in FileMan format.

1301 Comment 1 APCDTLC1 Free Text.

1302 Comment 2 APCDTLC2 Free Text.

Developers’ Tools
117 September 2005

Standards and Conventions Developers’ Handbook

1303 Comment 3 APCDTLC3 Free Text.

1401 CPT pointer APCDTCPT Pointer to IHS LAB CPT Code file.

1402 CPT - Billable Items APCDTCPS Free Text.

1601 Lab POV APCDTCPS Free Text.

V Immunization entries:
Input template: [APCDALVR 9000010.11 (ADD)]

Field Field Name Variable Data description
.01 Immunization ACDTIMM Pass as a "`" concatenated with the

Pointer to Immunization File (Vaccine).

.02 Patient Name APCDPAT Patient IEN (Required)

.03 Visit APCDVSIT Visit IEN (Required)

.04 Series APCDTSER Dose # (Series #). See data dictionary for
set of codes.

.05 Lot APCDTLOT Lot #, Pointer to Immunization Lot File

.06 Reaction APCDTREC See data dictionary for set of codes.

.12 VIS Date APCDTVSD Vaccine Information Statement Date
This is the release date or revision date of
the Statement--NOT the date of visit.)

1201 Event Date/Time APCDTCDT Date/time immunization was given

1202 Ordering Provider APCDTPRV Provider who ordered immunization.
Caller must check to see if this field
points to file 6 or 200 to identify which
IEN to send.

1203 Clinic APCDTCLN Points to Clinic Stop file

1204 Encounter Provider APCDTEPR Provider who gave immunization. Caller
must check to see if this field points to
file 6 or 200 to identify which IEN to
send.

Developers’ Tools
118 September 2005

Standards and Conventions Developers’ Handbook

1208 Parent APCDTPNT Points to another V Immunization entry

1209 External Key APCDTEXK

1210 Outside Provider APCDTOPR Free text name

V Skin Test entries:
Input template: [APCDALVR 9000010.12 (ADD)]

Field Field Name Variable Data description
.01 Skin Test APCDTTYP Pass as a "`" concatenated with the Skin

Test file IEN.

.02 Patient Name APCDPAT Patient IEN (Required)

.03 Visit APCDVSIT Visit IEN (Required)

.04 Results APCDTRES See data dictionary for set of codes. Has
input transform that should be executed
before passing data.

.05 Reading APCDTREA The value representing the reading of the
skin test. Has input transform that should
be executed before passing data.

.06 Date Read APCDTDR Date in FileMan format. Has input
transform that should be executed before
passing data.

1201 Event Date/Time APCDTCDT Date/time skin test was performed.

1202 Ordering Provider APCDTPRV Provider who ordered skin test. Caller
must check to see if this field points to
file 6 or 200 to identify which IEN to
send.

1203 Clinic APCDTCLN Points to Clinic Stop file

1204 Encounter Provider APCDTEPR Provider who took skin test or who read
it. Caller must check to see if this field
points to file 6 or 200 to identify which
IEN to send.

1208 Parent APCDTPNT Points to another V Skin Test entry

Developers’ Tools
119 September 2005

Standards and Conventions Developers’ Handbook

1209 External Key APCDTEXK

1210 Outside Provider APCDTOPR Free text name

V Medication entries:
Input template: [APCDALVR 9000010.14 (ADD)]

Field Field Name Variable Data description
.01 Medication APCDTRX Pass as a "`" concatenated with the Drug

file IEN.

.02 Patient Name APCDPAT Patient IEN (Required)

.03 Visit APCDVSIT Visit IEN (Required)

.04 Name of Non-Table Drug APCDTNTD Free Text.

.05 SIG APCDTSIG Medication instructions for this
prescription.

.06 Quantity APCDTQTY Number

.07 Days Prescribed APCDTDAY Number

.08 Date Discontinued APCDTDIS Date in FileMan format

1101 Comment APCDTCOM Free Text

1102 Prescription # APCDTRXN Free Text

1201 Event Date/Time APCDTCDT Date/time medication was filled.

1202 Ordering Provider APCDTPRV Provider who ordered medication. Caller
must check to see if this field points to
file 6 or 200 to identify which IEN to
send. Required to merge with patient's
main visit for that day.

1203 Clinic APCDTCLN Points to Clinic Stop file

1204 Encounter Provider APCDTEPR Provider who filled prescription. Caller
must check to see if this field points to
file 6 or 200 to identify which IEN to
send.

Developers’ Tools
120 September 2005

Standards and Conventions Developers’ Handbook

1208 Parent APCDTPNT Points to another V Medication entry

1209 External Key APCDTEXK

1210 Outside Provider APCDTOPR Free text name

1211 Ordering Date APCDTODT Date physician wrote prescription.
Required to merge with patient's main
visit for that day.

1212 Alternate Drug Name APCDTALT Free text name

V Radiology entries:
Input template: [APCDALVR 9000010.22 (ADD)]

Field Field Name Variable Data description
.01 Radiology Procedure APCDTRAD Pass as a "`" concatenated with the

Rad/Nuc Med Procedures file (#71) IEN.

.02 Patient Name APCDPAT Patient IEN (Required)

.03 Visit APCDVSIT Visit IEN (Required)

.05 Abnormal APCDTABN 1 for Abnormal; 0 for Normal

.06 Diagnostic Code APCDTDC Pass as a "`" concatenated with the
pointer to Diagnostic Codes file (#78.3)

.07 Modifier APCDTMOD Pass as a "`" concatenated with the
pointer to the CPT Modifier file.

.08 Modifier 2 APCDTMD2 Pass as a "`" concatenated with the
pointer to the CPT Modifier file.

1101 Impression APCDTIMP Free Text (up to 245 characters)

1201 Event Date/Time APCDTCDT Date/time medication was filled.

1202 Ordering Provider APCDTPRV Provider who ordered x-ray. Caller must
check to see if this field points to file 6 or
200 to identify which IEN to send.
Required to merge with patient's main
visit for that day.

1203 Clinic APCDTCLN Points to Clinic Stop file

Developers’ Tools
121 September 2005

Standards and Conventions 	 Developers’ Handbook

1204 Encounter Provider APCDTEPR 	 Radiologist who read the film. Caller
must check to see if this field points to
file 6 or 200 to identify which IEN to
send.

1208 Parent APCDTPNT 	 Points to another V Radiology entry

1209 External Key APCDTEXK

1210 Outside Provider APCDTOPR 	 Free text name

1211 Ordering Date APCDTODT Date physician ordered x-ray. Required
to merge with patient's main visit for that
day.

Other V file entries:
Look at the input templates for the other V files for the variables needed to create
entries.

Other V files:
9000010.03 V CHS ^AUPNVCHS(
9000010.04 V EYE GLASS ^AUPNVEYE(
9000010.05 V DENTAL ^AUPNVDEN(
9000010.13 V EXAM ^AUPNVXAM(
9000010.15 V TREATMENT ^AUPNVTRT(
9000010.16 V PATIENT ED ^AUPNVPED(
9000010.17 V PHYSICAL THERAPY ^AUPNVPT(
9000010.18 V CPT ^AUPNVCPT(
9000010.19 V ACTIVITY TIME ^AUPNVTM(
9000010.21 V DIAGNOSTIC PROCEDU ^AUPNVDXP(
9000010.23 V HEALTH FACTORS ^AUPNVHF(
9000010.24 V PATHOLOGY ^AUPNVPTH(
9000010.25 V MICROBIOLOGY ^AUPNVMIC(
9000010.27 ZV MICROBIOLOGY (SF) ^AUPNVMIS(
9000010.28 V NOTE ^AUPNVNOT(
9000010.29 V EMERGENCY VISIT RE ^AUPNVER(
9000010.31 V BLOOD BANK ^AUPNVBB(
9000010.32 V PHN ^AUPNVPHN(
9000010.33 V TRANSACTION CODES ^AUPNVTC(
9000010.34 V NARRATIVE TEXT ^AUPNVNT(
9000010.35 V ELDER CARE ^AUPNVELD(
9000010.37 V TRANSACTION CHARGE ^AUPNVTRC(
9000010.38 V UNHF ^AUPNVUNH(
9000010.39 V TREATMENT CONTRACT ^AUPNVTXC(
9000010.41 V ASTHMA 	 ^AUPNVAST(

Developers’ Tools
122 	September 2005

Standards and Conventions Developers’ Handbook

9000010.99 V LINE ITEM (GOODS&S ^AUPNVLI(

2.3.4.3 Delete a visit in PCC: EN^APCDVDLT

Set variable APCDVDLT equal to visit internal entry number and call
EN^APCDVDLT.

2.3.4.4 Sets up APCD environment variables: EN^APCDEIN

Used when calling PCC data entry in interactive mode.

2.3.4.5 Changes a visit date and time: START^APCDCVDT

WARNING: This routine executes the cross-references on the .03 field (except the
"AD") in order to reset the "AA" cross-reference. Very dangerous assumptions
here. For one, if the date of the VISIT was used on any other field it would not be
reset.

Array APCDCVDT must be passed as follows:
APCDCVDT("VISIT DFN") DFN of VISIT entry being changed.
APCDCVDT("VISIT DATE/TIME") Date and time to be changed to in

internal FileMan form.

APCDCVDT("TALK") Any value including NULL

If APCDCVDT("TALK") exists a dot (.) will be printed for each V FILE entry
processed during both passes.

Upon exit APCDCVDT("ERROR FLAG") will exist if an error was detected.

It is the callers responsibility to KILL APCDCVDT.

2.3.4.6 Process one mnemonic in PCC Data Entry: EN^APCDEA3

Used to have user perform an add or modify on a visit from outside PCC.

Coding sequence:

 D ^APCDEIN

Set variables; see following list.

 D EN^APCDEA3

 D EN^APCDEKL

Developers’ Tools
123 September 2005

Standards and Conventions Developers’ Handbook

Input Variables:
APCDVSIT
APCDPAT
APCDCAT
APCDTYPE
APCDVLK
APCDLOC
APCDMODE
APCDMNE

Visit IEN
Patient IEN
Service Category
Visit Type (IHS, 638, VA, etc.)
Visit IEN
Location of Encounter
A for Add; M for Modify
IEN for mnemonic (file 9001001)

APCDMNE("NAME") Mnemonic name

2.3.4.7 Kills APCD variables: EN1^APCDEKL

Used when calling PCC data entry in interactive mode.

2.3.4.8 Interactive Problem List updating: EN1^APCDPL

DFN must be set to patient internal entry number.

2.3.4.9 Non-interactive add to problem list : ADDPROB^APCDALV2

$$ADDPROB^APCDALV2 with the following parameters:
(APCDDX,APCDP,APCDDLM,APCDCLS,APCDN,APCDFAC,APCDDTE,AP
CDSTAT,APCDDOO)

APCDDX is the diagnosis - pass in "`"_IEN format or pass code (required)

APCDP is the patient DFN (required)

APCDDLM is the date last modified, if null I will stuff DT, PASS IN

EXTERNAL FORMAT
APCDCLS is the class (not required)
APCDN - provider narrative pass either "`"_IEN of provider narrative or

pass narrative text
APCDFAC - facility IEN, if null will use DUZ(2)
APCDDTE - date entered, if null will use DT , PASS IN EXTERNAL

FORMAT
APCDSTAT - status I or A WILL DEFAULT TO A IF NONE PASSED
APCDDOO - date of onset (pass in EXTERNAL format please) (not

required)

ENTERED BY (field 1.03) is stuffed with DUZ

Error codes will be passed back

Developers’ Tools
124 September 2005

Standards and Conventions Developers’ Handbook

1 = invalid dx, either not a valid ien, inactive code, E code
2 = invalid patient dfn, either not a valid dfn or patient merged
3 = invalid class code
4 = error creating entry with FILE^DICN
5 = invalid date last modified
6 = invalid provider narrative
7 = invalid date entered
8 = invalid facility
9 = invalid status
10 = invalid date of onset

2.3.4.10 Non-interactive delete a problem : DELPROB^APCDALV2

$$DELPROB^APCDALV2(problem IEN)

Result will equal -1 if entry passed is not a valid problem.

2.3.4.11 Display a visit : APCDVD

Set APCDVSIT equal to visit internal entry number and call ^APCDVD. Visit is
displayed in List Manager mode.

2.3.4.12 Get a visit for display : GETVISIT^APCDDISP

Set APCDPAT equal to patient internal entry number and call
GETVISIT^APCDDISP. Interactive mode where user is asked for visit date and
if more than one visit exists, is asked to choose among them. Returns visit
internal entry number in APCDVSIT.

2.3.4.13 Lookup visit : APCDVLK

Caller can pass the visit date in APCDVLDT or this routine will prompt for the

visit date/time.

Variable APCDPAT must contain the patient DFN.

User will be returned the following variables:

APCDVSIT-IEN of visit

APCDCAT-service category of visit

APCDTYPE-type of visit

APCDDATE-date of visit

APCDCLN-clinic of visit

Developers’ Tools
125 September 2005

Standards and Conventions 	 Developers’ Handbook

APCDLOC-location of visit

 APCDPAT-patient DFN

Caller is responsible for killing these variables.

2.3.4.14 Edit Visit List Template: EN^APCDEFL

Calling routine must pass visit IEN in APCDVSIT
Calling routine responsible for killing APCDVSIT
Calling routine responsible for killing APCD variables - D EN1^APCDEKL.

2.3.5 Sensitive Patient Tracking APIs
Requires PIMS version 5.3

Used in Patient Lookup calls if FileMan not used

They are to be used by any software not using FileMan calls that utilize the patient
lookup routine ^APCDLK. This would most likely be GUI applications. Without
using these calls, there would be holes in your security system as far as tracking
access to sensitive patients.

PTSEC^DGSEC4 – DG Sensitive Record Access
Type: Remote Procedure Call

Return Value Type: ARRAY

Description:

This Remote Procedure Call (RPC) will:

1.	 Verify user is not accessing his/her own Patient file record if the Restrict Patient
Record Access (#1201) field in the MAS parameters (#43) file is set to yes and
the user does not hold the DG RECORD ACCESS security key. If parameter set
to yes and user is not a key holder, a social security number must be defined in
the New Person file for the user to access any Patient file record.

2.	 Determine if user accessing a sensitive record.

3.	 Record access if facility is tracking patient as non-sensitive.

Input Parameter: DFN Parameter Type: LITERAL

Required: YES Sequence Number: 1

Description: DFN = Patient (#2) file IEN.

Input Parameter: DGMSG Parameter Type: LITERAL

Developers’ Tools
126 	September 2005

Standards and Conventions Developers’ Handbook

Maximum Data Length: 1

Required: NO Sequence Number: 2

Description:

DGMSG = 1 - if message should be generated when a user’s SSN is undefined
0 - message will not be generated
If not defined, defaults to 1.

Input Parameter: DGOPT Parameter Type: LITERAL
Required: NO Sequence Number: 3
Description: Contains Option name^Menu text for DG Security Log update.

Return Parameter Description:

RESULT(1) =

-1: RPC/API failed Required variable not defined

0: No display/action required. Not not sensitive or not accessing own Patient record

1: Display warning message. Sensitive - inpatient or a DG Sensitivity key holder or
Employee and DG SECURITY OFFICER key holder

2: Display warning message, require OK to continue and call DG Sensitive Record
Bulletin RPC to update DG Security Log file and generate Sensitive Record Access
mail message. Sensitive - not an inpatient and not a key holder or Employee/not a
DG Security Officer key holder

3: Access to record denied. Accessing own Patient file record

4: Access to Patient file (#2) records denied. SSN not defined

RESULT(2-n) = error message or warning/Privacy Act message. Error and warning
messages will begin in RESULT(2) array. The Privacy Act message is the longest
message and will utilize RESULT(2)- RESULT(8).

If RESULT(1)=1, the DG Security Log file is updated.

If RESULT(1)=2, the user must acknowledge they want to access the restricted
record and the application must call the DG SENSITIVE RECORD BULLETIN RPC
to update the DG Security Log file and generate the Sensitive Record Access mail
message.

NOTICE^DGSEC4 – DG Sensitive Record Bulletin
Type: Remote Procedure Call

Return Value Type: SINGLE VALUE

Developers’ Tools
127 September 2005

Standards and Conventions Developers’ Handbook

Description:
This Remote Procedure Call (RPC) will add an entry to the DG Security Log (#38.1)
file and/or generate the sensitive record access bulletin depending on the value in
Action input parameter. If Action parameter not defined, defaults to update DG
Security Log file and generate Sensitive Record Access mail message.

Input Parameter: ACTION Parameter Type: LITERAL

Maximum Data Length: 1

Required: NO Sequence Number: 3

Description:

ACTION = 1 - Set DG Security Log entry

2 - Generate Sensitive Record Access bulletin
3 - Both

Input Parameter: DFN Parameter Type: Literal

Required: Yes Sequence Number: 1

Description: DFN = Patient (#2) file IEN

Input Parameter: DGOPT Parameter Type: LITERAL
Required: NO Sequence Number: 2
Description: DGOPT = Option Name^Menu test
If not defined, OP^XQCHK identifies option or defaults to UNKNOWN.
Return Parameter Description:
RESULT=

1 - successfully added entry and/or generated sensitive record access bulletin
0 - unsuccessful

2.3.6 Inpatient Data

2.3.6.1 Inpatient Data Update API’s

ADD^BDGAPI – Add ADT event (admission, transfer or discharge)
Parameters: incoming array can be changed but is not killed; passed by reference

ALWAYS REQUIRED:

ARRAY("PAT") = patient ien

ARRAY("TRAN") = transaction type (1=admit, 2=ward transfer, 3=discharge,

4=check-in lodger, 5=check-out lodger, 6=service transfer)
ARRAY("DATE") = date/time for movement, in FM or external format
ARRAY("USER") = user who entered movement

Developers’ Tools
128 September 2005

Standards and Conventions Developers’ Handbook

CONDITIONALLY REQUIRED:
if admission -
ARRAY("UBAS") = 1-digit UB92 admit source code, valid 1-9 & A
ARRAY("ADMT") = 1-digit IHS admission code, created from UBAS
ARRAY("ADX") = admitting dx, free text to 30 characters, no ";"
ARRAY("ACCT") = external account # - to be passed to PCC on add

if ADMT=2 or 3 on admission or DSCT=2 on discharge
ARRAY("TFAC") = transfer facility (in or out), name or IEN

if admission or ward transfer

ARRAY("WARD") = ward location, name or IEN

if admission or service transfer
ARRAY("SRV") = treating specialty, 2-digit IHS code (file 45.7)
ARRAY("ADMD") = admitting physician, IHS ADC code or name
ARRAY("PRMD") = primary provider, IHS ADC code or name; if not sent, will
 be stuffed with attending
ARRAY("ATMD") = attending provider, IHS ADC or code

if discharge
ARRAY("DSCT") = internal entry number in file 405.1

OPTIONAL:
if admission
ARRAY("UBAT") = 1-digit UB92 admission code, valid values 1-4
ARRAY("REFP") = referring provider, free text, up to 30 characters

if admission or ward transfer
ARRAY("ROOM") = room/bed, formatted free text (room-bed)

if discharge
ARRAY("UBDS") = 1-2 digit UB92 discharge status code, valid 1-7,10,20,30

Returns status: ="" means all went well
=1^MESSAGE means event stored but one or more required

fields were not filed; original value of those fields in error
 message

=2^MESSAGE means event was NOT stored; one or more
required fields could not be filed

New variable set and passed back: ARRAY("VIEN") = visit IEN

Example: S ERR=$$ADD^BDGAPI(.ARRAY)

Developers’ Tools
129 September 2005

Standards and Conventions 	 Developers’ Handbook

CANCEL^BDGAPI1 – Delete ADT Event (admission, transfer or discharge)
Parameters: See details under ADD^BDGAPI

REQUIRED: ARRAY("ACCT") = outside account number for linking to
visit

Returns: See details under ADD^BDGAPI

Example: 	S ERR=$$CANCEL^BDGAPI(.ARRAY)

EDIT^BDGAPI2 – Modify ADT Event (admission, transfer or discharge)
Parameters: See details under ADD^BDGAPI

REQUIRED: ARRAY("ACCT") = outside account number for linking to
visit

Returns: See details under ADD^BDGAPI

Example: 	S ERR=$$EDIT^BDGAPI(.ARRAY)

2.3.6.2 	 Inpatient Data View API’s

2.3.6.2.1	 IHS system calls:

VAR^BDGVAR – Sets ADT system-wide variables
Parameters: None

Returns: None

Example: 	D ^BDGVAR (Used if calling option separate from ADT Menus)

CHECK^BDGVAR – Status of link between ADT and PCC.
Parameters: 	 TALK = 1 means display mini message to screen

TALK = 2 means display full message to screen
TALK = 0 means no display; just return status

Returns: 	 1 if ADT set up but PCC link is off
2 if ADT set up and PCC link is on
0 if ADT not set up - do not continue
If TALK not = 2 and ADT not set up, XQUIT set to 1

Example: S STATUS=$$CHECK^BDGVAR(TALK)

Developers’ Tools
130 	September 2005

Standards and Conventions Developers’ Handbook

EXIT^BDGVAR – Cleans up ADT system-wide variables
Parameters: None

Returns: None

Example: D EXIT^BDGVAR

2.3.6.2.2 IHS calls to return patient data:

ADMPRV^BDGF1 – Inpatient’s provider’s name
Parameters:

ADM = admission IEN
PAT = patient DFN
TYPE ="ADM" for admitting, "PRM" for primary, "ATT" for attending
MODE ="" for external format or ="I" for internal format

Returns: Provider name or provider IEN in file 200, depending on MODE set

Example: S X=$$ADMPRV^BDGF1(ADM,PAT,TYPE,MODE)

ADMPRVS^BDGF1 – Inpatient’s provider’s service/section
Parameters:

ADM = admission IEN
PAT = patient DFN
TYPE ="ADM" for admitting, "PRM" for primary, "ATT" for attending
MODE ="" for external format or ="I" for internal format

Returns: Service/Section field in file 200 for provider type requested

Example: S X=$$ADMPRVS^BDGF1(ADM,PAT,TYPE,MODE)

ADMSRV^BDGF1 – Admitting treating specialty name
Parameters:

ADM = admission IEN

PAT = patient DFN

Returns: Admitting treating specialty name

Example: S X=$$ADMSRV^BDGF1(ADM,PAT)

Developers’ Tools
131 September 2005

Standards and Conventions Developers’ Handbook

$$ADMSRVC^BDGF1 – Admitting treating specialty abbreviation & code
Parameters:

ADM = admission IEN
PAT = patient DFN

Returns: Admitting treating specialty abbreviation and associated IHS code
separated by a space.

Example: S X=$$ADMSRVC^BDGF1(ADM,PAT)

ADMSRVN^BDGF1 – Admitting treating specialty internal number
Parameters:

ADM = admission IEN
PAT = patient DFN

Returns: Admitting treating specialty internal entry number

Example: S X=$$ADMSRVN^BDGF1(ADM,PAT)

ADMTXN^BDGF1 – Admitting treating specialty transfer
Parameters:

ADM = admission IEN
PAT = patient DFN

Returns: Internal entry number in Patient Movement file for admitting service
transfer associated with the admission entry. Every admission creates 2 entries –
admission entry with ward and visit pointers and a service transfer entry with
providers.

Example: S X=$$ADMTXN^BDGF1(ADM,PAT)

ADMTYP^BDGF1 – IHS admit type and code for admission
Parameters: ADM = admission IEN

Returns: IHS code number & IHS admission type name separated by a space.

Example: S X=$$ADMTYP^BDGF1(ADM)

CURDX^BDGF1 – Admitting diagnosis for current inpatient
Parameters: PAT = patient DFN

Developers’ Tools
132 September 2005

Standards and Conventions 	 Developers’ Handbook

Returns: Admitting diagnosis (free text) for a current inpatient. If patient is not a
current inpatient, “??” is returned.

Example: S X=$$CURDX^BDGF1(PAT)

CURLOS^BDGF1 – Length of stay for current inpatient or observation patient
Parameters: 	 PAT= patient DFN

MODE =1 return LOS in hours

Returns: Length of stay in days for a current inpatient; length of stay in hours if
MODE=1; “??” if patient is not a current inpatient

Example: S X=$$CURLOS^BDGF1(PAT,1)

CURPRV^BDGF1 – Current attending provider for patient
Parameters: 	 PAT = patient DFN

LENGTH = number of characters to return; if not set, 20 is used

Returns: Name of attending provider for a current inpatient.

Example: S X=$$CURPRV^BDGF1(PAT,30)

DSADM^BDGF1– Was patient admitted after day surgery within site
parameter limit?

Parameters:

ADM = admission IEN

PAT = patient DFN

Returns: “1_^_date of last day surgery” OR “0” if last day surgery not within
time range. Time range determined by site parameter.

Example: S X=$$SDADM^BDGF1(ADM,PAT)

INPT1^BDGF1 – Admission date if patient was an inpatient on date sent
Parameters:

PAT = patient DFN

DATE = date in FileMan format

Returns: Readable admission date or NULL if patient was not inpatient on that
date

Example: S X=$$INPT1^BDGF1(PAT,DATE)

Developers’ Tools
133 	September 2005

Standards and Conventions Developers’ Handbook

LASTPRV^BDGF1 – Last attending provider
Parameters:

ADM = admission IEN
PAT = patient DFN
MODE ="" for external format or ="I" for internal format

Returns: Last recorded attending provider name or IEN for admission

Example: S X=$$LASTPRV^BDGF1(ADM,PAT,MODE)

LASTPRVC^BDGF1 – Last attending provider’s PCC code
Parameters:

ADM = admission IEN

PAT = patient DFN

Returns: Last recorded attending provider’s PCC code

Example: S X=$$LASTPRVC^BDGF1(ADM,PAT)

LASTPRVS^BDGF1 – Last attending provider’s service
Parameters:

ADM = admission IEN

PAT = patient DFN

MODE ="" for external format or ="I" for internal format

Returns: Last recorded attending provider’s service/section name or IEN

Example: S X=$$LASTPRVS^BDGF1(ADM,PAT,MODE)

LASTSRVN^BDGF1– Discharge treating specialty name
Parameters:

ADM = admission IEN

PAT = patient DFN

Returns: Last recorded treating specialty name for admission

Example: S X=$$LASTSRVN^BDGF1(ADM,PAT)

Developers’ Tools
134 September 2005

Standards and Conventions Developers’ Handbook

LASTSRVC^BDGF1 – Discharge treating specialty abbreviation & code.
Parameters:

ADM = admission IEN

PAT = patient DFN

Returns: Last recorded treating specialty abbreviation and IHS code for
admission separated by a space

Example: S X=$$LASTSRVC^BDGF1(ADM,PAT)

LASTTXN^BDGF1 – Discharge treating specialty movement
Parameters:

ADM = admission IEN

PAT = patient DFN

Returns: Last recorded treating specialty transfer IEN for admission and the

treating specialty IEN itself, separated by a “^”.

Example: S X=$$LASTTXN^BDGF1(ADM,PAT)

LOSHRS^BDGF1 – Length of stay in hours between a specific date/time &
admission date/time.

Parameters:

CA = admission IEN

DATE = date/time used for calculation, in FileMan format

PAT = patient DFN

Returns: Number of hours between admission date/time and date/time sent in
call.

Example: S X=$$LOSHRS^BDGF1(CA,DATE,PAT)

PRIORTXN^BDGF1 – Last treating specialty transfer prior to a date/time
Parameters:

DATE = date/time used for calculation, in FileMan format

CA = admission IEN

Developers’ Tools
135 September 2005

Standards and Conventions Developers’ Handbook

PAT = patient DFN

Returns: Last treating specialty transfer prior to date/time sent within this
admission

Example: S X=$$PRIORTXN^BDGF1(DATE,CA,PAT)

PRIORMVT^BDGF1 – Last ward transfer prior to a date/time
Parameters:

DATE = date/time used for calculation, in FileMan format

CA = admission IEN

PAT = patient DFN

Returns: Returns last ward transfer IEN within this admission prior to date/time
in call. May return admission itself.

Example: S X=$$PRIORMVT^BDGF1(DATE,CA,PAT)

READM^BDGF1 – Was patient readmitted within date range?
Parameters:

ADM = admission IEN

PAT = patient DFN

LIMIT = # of days to use in calculating; if not set will use site parameter

Returns: “1_^_last discharge date” if patient was admitted within time limit in

call or site parameter. Returns 0 (zero) if not.

Example: S X=$$READM^BDGF1(ADM,PAT,LIMIT)

STATUS^BDGF2 – Patient’s current inpatient status
Parameters: PAT = patient DFN

Returns: Free text phrase describing patient’s inpatient status. Choices are:
"Patient Died on (specific date)”
"Outpatient"
"Pt currently an inpatient on (ward name here)”
"Pt currently an observation patient on (ward name here)”
"Active Day Surgery Patient"
"Active Incomplete Chart"
"Active Day Surgery Incomplete Chart"

Developers’ Tools
136 September 2005

Standards and Conventions Developers’ Handbook

Example: S X=$$STATUS^BDGF2(PAT)

VISIT^BDGF1 – Visit linked to admission
Parameters:

PAT = patient DFN

DATE = admission date in FileMan format

Returns: Internal entry number of PCC visit linked to admission on this date

Example: S X=$$VISIT^BDGF1(PAT,DATE)

WRDABRV^BDGF1– Current inpatient’s ward
Parameters: PAT = patient DFN

Returns: Abbreviation for patient’s current ward location

Example: S X=$$WRDABRV^BDGF1(PAT)

WRDABRV2^BDGF1 – Admitting ward abbreviation
Parameters: N = admission entry IEN

Returns: Abbreviation for admitting ward for this admission

Example: S X=$$WRDABRV2^BDGF1(N)

2.3.7 Appointment Data APIs

2.3.7.1 Appointment Update API’s
MAKE^BSDAPI – Make scheduled or walk-in appointment

Input parameter:

ARRAY("PAT") = IEN of patient in file 2

ARRAY("CLN") = IEN of clinic in file 44

ARRAY("TYP") = 3 for scheduled appts, 4 for walk-ins

ARRAY("ADT") = appointment date and time

ARRAY("LEN") = appointment length in minutes (5-120)

Developers’ Tools
137 September 2005

Standards and Conventions Developers’ Handbook

ARRAY("OI") = reason for appt - up to 150 characters

ARRAY("USR") = user who made appt

Returns: error status and message

= 0 or null: everything okay

= 1^message: error and reason

Example: S ERR=$$MAKE^BSDAPI(.ARRAY)

CANCEL^BSDAPI – Cancel appointment

Input Parameter:

ARRAY("PAT") = IEN of patient in file 2

ARRAY("CLN") = IEN of clinic in file 44

ARRAY("TYP") = C for canceled by clinic; PC for patient canceled

ARRAY("ADT") = appointment date and time

ARRAY("CDT") = cancel date and time

ARRAY("USR") = user who canceled appt

ARRAY("CR") = cancel reason - pointer to file 409.2

ARRAY("NOT") = cancel remarks - optional notes to 160 characters

Returns: error status and message

= 0 or null: everything okay

= 1^message: error and reason

Example: S ERR=$$CANCEL^BSDAPI(.ARRAY)

CHECK-IN function: See the Visit Creation APIs section.

2.3.7.2 Appointment View Data APIs
PCP^BSDU1 – Returns patient’s primary care provider (PCP)

Input Parameters: PAT = patient DFN

Developers’ Tools
138 September 2005

Standards and Conventions Developers’ Handbook

Returned array
ARRAY(1)=PCP name/team name/PCP IEN/team IEN

ARRAY(1,0)=date last updated/user who updated/reason
ARRAY(2)=women’s health PCP name/WH team name/WH PCP IEN/team IEN
ARRAY(2,0)=date last updated/user who updated/reason
ARRAY(3)=mental health provider name/MH team name/MH PCP IEN/MH

team IEN/MH medication mgr name/MH med mgr IEN
ARRAY(3,0)=date last updated/user who updated/reason
ARRAY(3) only used if site is running Cimarron MH Provider menu

Example: S ARRAY=”ABC” D PCP^BSDU1(PAT,.ARRAY)

PCPDISP^BSDU1 – Returns array of PCP info with captions

Input Parameters: PAT = patient DFN

Returned array
ARRAY(1)= "Primary Care Provider/Team: "_PCP name/team name
ARRAY(2)= "Women's Health PCP/Team: "_ women’s health PCP name/WH
team name
ARRAY(3)= "Mental Health Providers/Team: "_ mental health provider
name/MH team name

Example: D PCPDISP^BSDU1(PAT,.ARRAY)

PEND^BSDU2 – Display pending appointments

Input Parameters:

PAT = patient IEN

TALK =1 means display results to current device

TALK =0 means be silent and return

Returned Array: ARRAY(#)=date^clinic name^other info

Example: D PEND^BSDU2(PAT, TALK,.ARRAY)

ACTV^BSDU – Is clinic active on this date?

Developers’ Tools
139 September 2005

Standards and Conventions Developers’ Handbook

Input Parameters:

CLINIC = IEN from Hospital Location file

DATE = Date in FileMan format

Returns: 1 if clinic is active; otherwise zero.

Example: S X=$$ACTV^BSDU(CLINIC,DATE)

APPTYP^BSDU2 – Type of appt (scheduled or walk-in)

Input Parameters:

PAT = patient DFN

DATE = appointment date in FileMan format

Returns: “SCHED” or “WALK-IN” or “??”

Example: S X=$$APPTYP^BSDU2(PAT,DATE)

CI^BSDU2 – Is appointment already checked-in?

Input Parameters:
PAT = patient DFN
CLINIC = hospital location file IEN
DATE = appointment date in FileMan format
SDIEN = IEN under Appointment multiple in Hospital Location file

(See SCIEN^BSDU2 for how to obtain this IEN)

Returns: 1 if checked in; or zero if not

Example: S X=$$CI^BSDU2(PAT,CLINIC,DATE,SDIEN)

CLNCODE^BSDU – Clinic code number and name

Input Parameters:

CLINIC = hospital location file IEN

Returns: 2 digit code_” – “_clinic name

Example: S X=$$CLNCODE^BSDU(CLINIC)

Developers’ Tools
140 September 2005

Standards and Conventions Developers’ Handbook

CO^BSDU2 – Is appointment already checked-out?

Input Parameters:
PAT = patient DFN
CLINIC = hospital location file IEN
DATE = appointment date in FileMan format
SDIEN = IEN under Appointment multiple in Hospital Location file

(See SCIEN^BSDU2 for how to obtain this IEN)

Returns: 1 if checked out; or zero if not

Example: S X=$$CO^BSDU2(PAT,CLINIC,DATE,SDIEN)

INACTVDT^BSDU – Date clinic was inactivated

Input Parameters:

CLINIC = hospital location file IEN

Returns: Inactivation date in readable format

Example: S X=$$INACTVDT^BSDU(CLINIC)

OI^BSDU2 – Other info (comments) for patient’s appointment

Input Parameters:

PAT = patient DFN

CLINIC = hospital location file IEN

DATE = appointment date in FileMan format

Returns: free text reason for appointment

Example: S X=$$OI^BSDU2(PAT,CLINIC,DATE)

PC^BSDU – Clinic’s principal clinic IEN

Input Parameters:

CLINIC = hospital location file IEN

Returns: IEN of principle clinic linked to this hospital location

Example: S X=$$PC^BSDU(CLINIC)

Developers’ Tools
141 September 2005

Standards and Conventions Developers’ Handbook

PCLINE^BSDU1 – Single line of Primary Care Provider info

Input Parameters:

PAT = patient DFN

Returns: "Pcp/Team:” Provider name/Team Name
If patient has women’s health provider assigned, it is expanded:

"Pcp/Team /WH Pcp/Team:” Provider name/Team name/…

Example: S X=$$PCLINE^BSDU1(PAT)

PRIN^BSDU – Clinic’s principal clinic name

Input Parameters:

CLINIC = hospital location file IEN

Returns: Name of principle clinic linked to this hospital location

Example: S X=$$PRIN^BSDU(CLINIC)

SCIEN^BSDU2 – Internal entry number for appointment in ^SC

Input Parameters:

PAT = patient DFN

CLINIC = hospital location file IEN

DATE = appointment date in FileMan format

Returns: IEN for appointment under multiple for date/time for clinic

Example: S X=$$SCIEN^BSDU2(PAT,CLINIC,DATE)

WALKIN^BSDU2 – Is appointment a walk-in?

Input Parameters:

PAT = patient DFN

DATE = appointment date in FileMan format

Returns: 1 if walk-in; otherwise a zero

Example: S X=$$WALKIN^BSDU2(PAT,DATE)

Developers’ Tools
142 September 2005

Standards and Conventions 	 Developers’ Handbook

GETVST^BSDU2 – Visit IEN linked to checked in appointment

Input Parameters:

PAT = patient DFN

DATE = appointment date in FileMan format

Returns: if appointment checked in and visit created and linked, that visit IEN

Example: S X=$$GETVST^BSDU2(PAT,DATE)

LIST^BSDAPI2 – List of patient’s appointments for date and clinic

Input Parameters:
DATE = Appointment date/time in FileMan format
TYPE = Contains "W" to include walk-ins; contains "C" to include cancelled
appts or set to null for neither
CLINIC = "ALL" for all clinics with appts on date OR array of clinic internal
entry numbers; passed by reference

•	 If you set CLINIC=ALL and you have clinics from multiple facilities,
you must set CLINIC("DEV") equal to the internal entry number of
Medical Center Division you want used.

•	 Principal clinics can be passed and they will expand to all clinics
under them

ARRAY = Array name where you want list returned; can be local or global array
•	 Send array ending in (or , such as S ARRAY="XYZ(" or S

ARRAY="^ABC(""XYZ"","

Returns: Array subscripted by simple number count (XYZ(1), XYZ(2) or
^ABC("XYZ",1), ^ABC("XYZ",2))
Each line contains: patient DFN ^ Clinic IEN ^ Appt Date/Time ^ Type ^ Length
of Appt ^ Other Info

Example: D LIST^BSDAPI2(DATE,TYPE,.CLINIC,ARRAY)

2.3.8 Generic VA Scheduling APIs

2.3.8.1 SDA^VADPT
Returns APPOINTMENT DATE/TIME data for a patient.

Developers’ Tools
143 	September 2005

Standards and Conventions Developers’ Handbook

Input Variables:
DFN This required variable is the internal entry number in the PATIENT
file.

VASD(“T”) Can be defined as the “to” date for which registrations are desired.
This must be passed as a valid VA File-Manager date. If neither VARP(“F”) nor
VARP(“T”) are defined, all appointments will be returned.

VASD(“F”) Can be defined as the “from” date for which appointments are
desired. This must be passed as a valid VA File-Manager date.

VASD(“W”) Can be passed as the specific STATUS desired in the following
format. If not passed, only those appointments which are still scheduled (or kept
in the event of a past date) for both inpatients and outpatients will be returned.

VASD(“W”) Contains these appts. are returned

1 Active/Kept

2 Inpatient appts. only

3 No-shows

4 No-shows, auto-rebook

5 Cancelled by Clinic

6 Cancelled by Clinic, auto rebook

7 Cancelled by Patient

8 Cancelled by Patient, auto rebook

9 No action taken

VASD(“C”,Clinic IFN) Can be set up to contain only those internal file entries
from the Hospital Location file for clinics which you would like to see
appointments for this particular patient. You may define this array with just one
clinic or with many. If you do not define this variable, it will be assumed that you
want appointments for this patient in all clinics returned.

Output Variables:
^UTILITY(“VASD”,$J,#,”I”) Internal format

^UTILITY(“VASD”,$J,#,”E”) External format

Piece 1 Date/Time of Appointment

Piece 2 Clinic

Piece 3 Status

Piece 4 Appointment Type

VAERR The error flag will have one of the following values.
0 -- no errors encountered
1 -- error encountered - DFN or ^DPT(DFN,0) is not defined

Developers’ Tools
144 September 2005

Standards and Conventions 	 Developers’ Handbook

2.3.9 Adverse Reaction Tracking Package Callable Routines

GMRADPT
GMRADPT extracts data from the Patient Allergies (120.8) file for a specified patient
based on the criteria specified in the GMRA input parameter. The data will be
returned in a local array.

Input:
DFN 	 The internal entry number in the Patient file for the patient whose allergy

data needs to be extracted.

GMRA 	 This is an optional three-piece variable that will determine which kinds of
allergy data will be returned by the extract. The default values which will
be used are shown in the discussion of each piece. Consider the variable
GMRA with the format P1^P2^P3 where

P1 can have the value 0, 1, or 2 where
0 means extract all allergies and adverse reactions
1 means extract allergies only
2 means extract adverse reactions only
A record stored in the Patient Allergies file is either an adverse drug reaction, or it
is a true allergy. Every allergy is an adverse reaction, but not every adverse
reaction is an allergy. This determination is made by the verifier of the allergy
data. The default value for this piece is 0.

P2 can have the value 0, 1, or 2 where
0 means extract all verified and non-verified records
1 means extract verified records only
2 means extract non-verified records only
A record can either be verified by some allergy verifier, or it has not yet been
verified. In the case that the site is using autoverification, the record is
automatically verified at the time the originator of the record signs off
(completes) on it. No record can be extracted before it has been signed off
(completed) by the originator, as it is not part of the medical record. The default
value for this piece is 0.

P3 is a three-character string, where each character can have the value of 0 or 1.
Consider P3 represented as XYZ where X, Y and Z are the three different
characters. Then the following is what each of these characters represents:

X 	 determines whether to extract records with the type of Other. If
X=0 then records with the type Other will not be extracted, and
if X=1 then they will be extracted.

Y 	 determines whether to extract records with the type of Food. If

Developers’ Tools
145 	September 2005

Standards and Conventions 	 Developers’ Handbook

Y=0 then records with the type Food will not be extracted, and if
Y=1 then they will be extracted.

Z 	 determines whether to extract records with the type of Drug. If
Z=0 then records with the type Drug will not be extracted, and if
Z=1 then they will be extracted.

A record has a type associated with it. The three types are Food, Drug and Other.
This variable will help to determine which of these types of records will be
extracted, and which types will not be extracted. The default value for this piece
is 111.

Output:
GMRAL 	 This variable is an array of the patient's data extracted by this utility

based on the criteria specified in the optional GMRA variable. The
format of this variable is:

GMRAL=(1,0,NULL) GMRAL(DA)=A^B^C^D^E^F^G^H
GMRAL(DA,"S",COUNT)=I

Where
GMRAL 	 is 1 if patient has Adverse Reaction. is 0 if patient has no

known Adverse Reaction. null if patient has not been asked
about Adverse Reaction.

DA is the internal entry number of the record in the Patient Allergies
(120.8) file.

A 	 is the patient's DFN (from input variables).

B 	 is the name of the allergen.

C 	 is the type of the allergen where D=Drug, F=Food, and O=Other.

D 	 is a flag denoting if the allergy has been verified where 1=verified
and 0=non-verified.

E 	 is a flag denoting whether the allergy is a true allergy, or if it is an
adverse reaction where 1=adverse reaction and 0=true allergy.

F 	 is both the external and internal representation of the allergy
Mechanism. It is stored in the format External";"Internal.

Mechanism

External 	Internal
Allergy 	0

Developers’ Tools
146 	September 2005

Standards and Conventions 	 Developers’ Handbook

Pharmacologic 	2
Unknown 	U

G 	 is the type of the reaction in the form of "F", "D", or "0" or a
combination of the three types.

Types

Internal External format
D is a drug reaction.
DF is a drug/food/other reaction
DFO is a drug/food reaction
DO is a drug/other reaction
F is a food reaction
FO is a food/other reaction
O is a other reaction

H is both the external and internal representation of the Adverse
Reaction Mechanism. It is stored in the format External";"Internal.

Mechanism

External Internal
Allergy A
Pharmacologic P
Unknown U

I 	 is both the external and internal representation of the allergy
Signs/Symptoms. Each of the Signs/Symptoms will be stored on
it's own "S" node in the following format.

External";"Internal pointer to Signs/Symptoms file (120.83). If the
pointer equals the "OTHER REACTION" then the free text stored in
the patient file will be stored in the external representation.

COUNT 	 is the order which the Signs/Symptoms are stored in the
GMRAL(DA,"S",COUNT) Array. Count is a positive
whole number.

Developers’ Tools
147 	September 2005

Standards and Conventions Developers’ Handbook

2.4 VA/IHS Convergence: Parameterization Details and
Examples

Parameter Tools is a generic method of handling parameter definition, assignment
and retrieval. A parameter may be defined for various entities where an entity is the
level at which you want to allow the parameter defined (e.g., package, system,
division, location, user, etc.). A developer may then determine in which order the
values assigned to given entities are interpreted.

Below is an example used for an IHS mod to the VA routine VADPT6:

First, use FileMan to create a PARAMETER DEFINITION:

NAME: DG IHS CHART ID DISPLAY TEXT: USE IHS CHART ID?
 MULTIPLE VALUED: No VALUE DATA TYPE: yes/no
 VALUE DOMAIN: "Y:yes;N:no"
VALUE HELP: SHOULD SYSTEM USE IHS CHART ID?

PRECEDENCE: 1 ENTITY FILE: SYSTEM

Then, use XPAR MENU TOOLS General Parameter Tools to Edit Parameter
Values (this creates the PARAMETER)

XPAR EDIT PARAMETER Edit Parameter Values

Select PARAMETER DEFINITION NAME: DG IHS CHART ID USE IHS
CHART ID?

----- Setting DG IHS CHART ID for System: B-SYSTEM.DSM.IHS.GOV ------

Value: ?

SHOULD SYSTEM USE IHS CHART ID?.

Value: YES

This creates the PARAMETER:
ENTITY: B-SYSTEM.DSM.IHS.GOV
PARAMETER: DG IHS CHART ID
INSTANCE: 1 VALUE: YES

A PARAMETER DEFINITION, 'DG IHS CHART ID' was created using
Fileman, then the ‘Edit Parameter Values’ option was used to create the parameter
and to enter the value of 'yes'.

Developers’ Tools
148 September 2005

Standards and Conventions Developers’ Handbook

PARAMETER DEFINITION:
NAME: DG IHS CHART ID DISPLAY TEXT: USE IHS CHART ID?
MULTIPLE VALUED: No VALUE DATA TYPE: yes/no
VALUE HELP: SHOULD SYSTEM USE IHS CHART ID?
PRECEDENCE: 1 ENTITY FILE: SYSTEM

PARAMETER:
ENTITY: B-SYSTEM.DSM.IHS.GOV PARAMETER: DG IHS
CHART ID
INSTANCE: 1 VALUE: YES

The routine, VADPT6 was modified with the addition of the following lines:
I DUZ("AG")="I"!(DUZ("AG")="E")&$$GET^XPAR("SYS","DG
IHS CHART ID")&(L="") D
.S (L,B)=$$HRCN^BDGF2(DFN,+$G(DUZ(2))) S:L=""
(L,B)="??" ;IHS/ITSC/CLS 01/11/2005

A BUILD called 'REGISTRATION - IHS VADPT 5.3' was created that contained
the routine VADPT6 and the parameter definition, ‘DG IHS CHART ID’, which
was exported to a kids file, ihsvadpt6.k.

The kids file was successfully loaded and installed on another system. Then the
‘Edit Parameter Values’ option was used to create the parameter for the system
and assign its value.

It works as advertised (if your agency is set to ‘I’ or ‘E’).

Please reference PARAMETER TOOLS Supplement to Patch XT*7.3*26 for
more information.

2.5 Event Drivers
An ‘Extended Action’ type of protocol entry in the PROTOCOL file #101 is called
from an event point in a package routine. This type of protocol executes the entry
action, if present, plus all sub-items. Any sub-items are designated ‘Action’ type
which executes its entry action then its exit action. The order sub-items are called
depends on the sequence field.

In the examples for Radiology and PIMS below, the ‘Extended Action’ protocol is
listed first, followed by a selection of sub-item protocols. Then there is a line or two
of code from the calling routine.

The Radiology event driver, ‘RA EVSEND OR’, is called whenever a radiology
request is created or changed. The ‘RA EVSEND OR’ protocol, in turn, calls the
‘Action’ type protocol, ‘RA IHS HOOK’ that executes its entry action, ‘D
^BRAPRAD’, the IHS PCC hook for Radiology.

Developers’ Tools
149 September 2005

Standards and Conventions Developers’ Handbook

NAME: RA EVSEND OR TYPE: extended action
DESCRIPTION: Invoked when a request is created or changed by the
Radiology/Nuclear Medicine package (the "backdoor") and the data is passed to
the Order Entry package, Version 3.0 or greater.

ITEM: RA IHS HOOK

EXIT ACTION: K:$L($G(RAVARBLE)) @RAVARBLE,RAVARBLE

NAME: RA IHS HOOK TYPE: action
DESCRIPTION: Place this protocol on the RA EVSEND OR extended action
protocol.

ENTRY ACTION: D ^BRAPRAD

Example of call to ^RAO7UTL which invokes the event driver:

^RAO7CH
D MSG^RAO7UTL("RA EVSEND OR",.@RAVARBLE)

MSG(RAPROTO,RAMSG) ; ship HL7 messages to CPRS from this entry point
; input: RAPROTO - protocol to execute
; RAMSG - message (in HL7 format)
D MSG^XQOR(RAPROTO,.RAMSG)

Q

The PIMS ADT event driver ‘BDGPM MOVEMENT EVENTS’ is more complex. It
has multiple sub-items that are used to not only trigger PIMS routines, but other
applications as well.

For instance, when a patient is admitted, the protocol ‘BDGPM MOVEMENT
EVENTS’ is evoked. This protocol then starts down its sub-items and calls them in
sequence order. The description field on the event driver protocol contains
documentation on what variables are set for the calling protocols.

In PIMS, there is a second event driver for Scheduling events called BSDAM
APPOINTMENT EVENTS. See it’s description field for more details.

NAME: BDGPM MOVEMENT EVENTS TYPE: extended action
DESCRIPTION: At the completion of a patient movement, a series of events
take place through this option. If your site adds a new software application that
must be notified when an ADT movement occurs, add the appropriate protocol
from that software to this list.

Developers’ Tools
150 September 2005

Standards and Conventions 	 Developers’ Handbook

The first item (sequence 1) called MUST be the BDGPM VISIT UPDATE as it
will create a PCC visit for the admission and place the visit pointer in the Patient
Movement file admission entry. This will take place ONLY if the PCC link is
turned on. So if your protocol requires a visit pointer, make sure to quit if there
isn't one.

The protocols sent with the release of this version are in the following sequence:

10-99: Prints a form or report OR creates an entry in another PIMS module.

100-199: Informs various applications, if installed, that a patient movement has
occurred.

200-299: Protocols that send mail messages and bulletins.

300-399: Reserved for local protocols.

Required Variables: (variables sent by event driver, not to be killed)

DFN = Patient's IFN
DGPMT 	 = Type of Movement (1=admission, 2=ward transfer,

3=discharge, 4=check-in lodger, 5=check-out lodger,
6=service transfer)

DGPMDA = Movement's IFN
DGPMCA = Admission IFN
DGPMP = 0 Node of Primary Movement PRIOR to Add/Edit/Delete
DGPMA = 0 Node of Primary Movement AFTER Add/Edit/Delete
DGQUIET = If $G(DGQUIET) then the read/writes should not occur.

Any code called by the event driver MUST check for
DGQUIET!!!!

If you need the internal entry number for the PCC visit associated with this
admission, use this code: $$GET1^DIQ(405,+DGPMCA,.27,"I")

ITEM: DGOERR NOTE SEQUENCE: 110
ITEM: SD APPT STATUS SEQUENCE: 115
ITEM: SC PCMM INPATIENT ACTIVITY SEQUENCE: 201
ITEM: BDGPM A SHEET SEQUENCE: 20
ITEM: BDGPM BULLETINS SEQUENCE: 205
ITEM: BDGPM INCOMPLETE CHART UPDATE SEQUENCE: 50
ITEM: BDGPM LOCATOR SEQUENCE: 25
ITEM: BDGPM VISIT UPDATE SEQUENCE: 1
ITEM: BDGPM REQUEST CHART SEQUENCE: 27
ITEM: ORU PATIENT MOVMT SEQUENCE: 101
ITEM: ORU AUTOLIST SEQUENCE: 105
ITEM: PSJ OR PAT ADT SEQUENCE: 120
ITEM: GMRADGPM MARK CHART SEQUENCE: 210

Developers’ Tools
151 	September 2005

Standards and Conventions Developers’ Handbook

ITEM: AQAL ADT EVENT SEQUENCE: 150

ITEM: AMCO ADT EVENT SEQUENCE: 130

NAME: BDGPM A SHEET
ITEM TEXT: CLINICAL RECORD BRIEF TYPE: action

DESCRIPTION: Protocol to print Clinical Record Brief for admission. If
DGQUIET variable is set will only print if other required variables sent with call.
See routine for details.

ENTRY ACTION: D

PAT^BDGCRB(+$G(DFN),+$G(DGPMCA),$G(BDGFIN),

$G(DGPMT),$G(BDGHALF),$G(DGQUIET),$G(BDGCOP),$G(BDGDEV)
)

NAME: BDGPM INCOMPLETE CHART UPDATE
ITEM TEXT: UPDATES INCOMPLETE CHART FILE TYPE: action

DESCRIPTION: Protocol to create entry in Incomplete Chart file, if parameter
is turned on. If admission is changed after discharge first entered, IC file will be
updated unless admission or discharge were deleted. In that case a bulletin will
be sent to appropriate people.

ENTRY ACTION: D ADD^BDGICEVT

NAME: ORU PATIENT MOVMT
ITEM TEXT: Review Orders on Patient Movement TYPE: action

DESCRIPTION: This is the option used to review orders when a patient is
discharged or transferred.

ENTRY ACTION: D REV^ORF4

NAME: PSJ OR PAT ADT
ITEM TEXT: Inpatient Medications Actions on Patient ADT TYPE: protocol

DESCRIPTION: This is the actions taken on a patient's Inpatient Medication
orders whenever the patient is Admitted, Discharged, or Transferred (ADT). This
is an action protocol to be used within the DG MOVEMENT EVENTS protocol.

FILE LINK: PSJ OR PAT ADT ENTRY ACTION: D ^PSJADT

Developers’ Tools
152 September 2005

Standards and Conventions Developers’ Handbook

Event Driver invoked by ^DGPMEVT:
N OROLD D INP^VADPT
S X=$O(^ORD(101,"B","BDGPM MOVEMENT EVENTS",0)) _";ORD(101," D EN1^XQOR:X
K VAIN,X

2.6 Using the PCC Visit Merge Pointer Update
If your application stores pointers to PCC visits, you will need to link to the PCC
Merge Utility so when visits are merged, your pointer is updated. You will need to
add your application to the MODULE PCC LINK CONTROL file with the code to
execute when visits are merged. The following is an example of adding your
application to the file:

PCCLNK ;EP -- add TIU to PCC Visit Merge Utility

D BMES^XPDUTL("Adding TIU to PCC Visit Merge
Utility . . .")
Q:$D(^APCDLINK("B","TEXT INTEGRATION UTILITY"))
;already exists
NEW DD,DO,DIC,DLAYGO,X,Y
S DIC="^APCDLINK(",DIC(0)="LE",DLAYGO=9001002
S DIC("DR")="1///I $L($T(MRG^BTIULINK)) D
MRG^BTIULINK"
S DIC("DR")=DIC("DR")_";.02///TIU"
S X="TEXT INTEGRATION UTILITY" D FILE^DICN
Q

Here is an example of the code to use to update the pointers:

BTIULINK ; IHS/ITSC/LJF - UPDATE TIU DOC UPON VISIT
MERGE ;

;;1.0;TEXT INTEGRATION UTILITIES;;NOV 04, 2004
;
;This routine is called by the PCC Visit Merge
Utility.
;The input variables are: APCDVMF - Merge from
visit ifn
; APCDVMT - Merge to visit ifn
;
;This routine finds the patient involved, scans
for this merged visit
;among the occurrences for this patient, and
updates the visit.
;

Developers’ Tools
153 September 2005

Standards and Conventions Developers’ Handbook

MRG ;PEP >> PRIVATE ENTRY POINT between TIU and PCC

N DIE,DA,DR,TIUN,X,Y
Q:'$D(APCDVMF) Q:'$D(APCDVMT)
S TIUN=0
F S TIUN=$O(^TIU(8925,"V",APCDVMF,TIUN)) Q:TIUN=""
D
.S DR=".03////"_APCDVMT,DA=TIUN,DIE="^TIU(8925," D
^DIE
;

EXIT Q

2.7 Unix Tools

2.7.1 VI - UNIX Editor: Crib Sheet

Invoking vi Character/Word Positioning

vi invoke vi, load a new file h or → forward one
character

vi file invoke vi, load a specified file l or ← back one
character

vi +n file at line n 0 beginning of line
vi + file at end of file $ end of line
vi + /s file at s(string) <spacebar> forward one

character
vi -r file recover file w forward to next

word
view file read only mode e ... end of next

word
b back to previous word

Quitting/Saving vi
Insert & Replace

:wq write (save) and quit
:w write (save) no quit a append after

cursor
:q quit without saving A append at end of

line
(only if no changes) i insert before

cursor
:x write (save) I insert at end of

line

Developers’ Tools
154 September 2005

Standards and Conventions Developers’ Handbook

(only if changes made)
:q! quit without saving
ZZ write (save) file and quit vi

Scrolling

<ctrl>f forward one screen

<ctrl>b back one screen

<ctrl>d down half screen
<ctrl>u up half screen

Line Positioning

H first line on screen
L last line on screen
M middle lline on screen

G go to end of file

nG go to line n
j or ↓ down one line (same position)

k or ↑ up one line (same position)

<ret> down one line

Changing/Undoing

rx replace character w/ x

R replace characters
cc change line

ncc change next n lines
cw change word

C Change to end of line
u undo last change
U undo current line changes

o open line below
O open line above

Deleting

dd delete current line
ndd delete

n lines
D ... from cursor to line
end
d} ... rest of paragraph

d0 ... to left margin
dw delete word

x delete current
character

Search/Replace

/string search forward
for string

?string search
backwards

n repeat last search
:#,#s/s1/s2 replace first

occurrence of
s1 on each line in

range (#-#)
w/ s2

:#,#s/s1/s2/gc ...but global and confirm
Other Helpful Commands

<ctrl> g displays line
status

<ctrl> l redraw screen
:se nu set line

numbering
:se nonu unset ...
:!command execute

shell command
:# go to line #
:w file write to file

:r!spell spell
check

Developers’ Tools
155 September 2005

Standards and Conventions Developers’ Handbook

yy yank line to buffer :n,kw file2 write lines n-k
into another file

nyy ... n lines to buffer :n,kw >> file2 append
lines n-k to another file

p put lines at cursor
P ... before cursor
c) change sentence starting at cursor

to new text
J join next line down to line with

cursor

NOTE: To obtain any command that is preceded by a “:”, you press ESC key first then type in
the colon.

2.7.2 Some Useful Unix Commands or Unix Scripts

gflist filename provides a listing of globals contained in filename

rflist filename provides a listing of routines contained in filename

sendto -l dev:dev cmbsyb filename

sendto

getfrom

gzip -v -9 filename

gunzip -v filename

man command

use this to send files to SQA. This will place your
files in the /usr/spool/uucppublic/VERIFY directory
on cmbsyb.

send file to a certain location.
Example: sendto tuclcl filename

script to get files from some system.
Ex.: getfrom -i -r DIST/96cert cmbsyb

aum_9610.tar.gz
This example would immediately get the aum* file
from cmbsyb which resides in the
/usr/spool/uucppublic/DIST/96cert subdirectory

compresses filename, filename will have a .gz
appended to the end (-9 is the best compression but
is the slowest speed - the default is -6)

decompresses filename

to get manual help on command

Developers’ Tools
156 September 2005

Standards and Conventions Developers’ Handbook

uname -a will give the version of UNIX install

mu a UNIX function that will normally take the user to
the MUMPS login

pub a UNIX function to cd (change directories) to
/usr/spool/uucppublic

u ... to /usr/lib/uucp

m ... to /usr/mumps

lpstat -t will display status of the lp (printer) spooler

cancel device name -number will free up hung printer jobs

FTP is another way of transferring files from system to system. Please see ftp help for further
instructions on its use. Non-IHS facilities must use FTP instead of any of the unix
scripts/commands described above.

Developers’ Tools
157 September 2005

Standards and Conventions Developers’ Handbook

3.0 Contact Information
If you have any questions or comments regarding this distribution, please contact the
OIT Service Center by:

Phone: (505) 248-4371 or

 (888) 830-7280

Fax: (505) 248-4363

Web: http://www.rpms.ihs.gov/TechSupp.asp

Email: ITSCHelp@mail.ihs.gov

Contact Information
158 September 2005

